

Jan 19, 2025 – 12:16 AM JST

PDB ID EMDB ID	:	8YJZ EMD-39354
Title	:	Structure of the human endogenous PCNA-FEN1-RNase H2 complex - State
		D
Authors	:	Tian, Y.; Gao, N.
Deposited on	:	2024-03-03
Resolution	:	5.15 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 5.15 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	261	75%	23% •
1	В	261	75%	23% •
1	С	261	75%	24% •
2	D	380	76%	17% 7%
3	Н	299	86%	13% •
4	G	312	54% 9%	37%
5	Ι	164	62% 13%	• 24%
6	J	20	80%	20%
7	Е	31	74%	26%

Mol	Chain	Length	Quality of chain	
8	F	14	71%	29%

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 14948 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Proliferating cell nuclear antigen.

Mol	Chain	Residues		At		AltConf	Trace		
1 B	В	257	Total	С	Ν	0	\mathbf{S}	0	0
	201	1980	1242	324	398	16	0		
1	С	957	Total	С	Ν	Ο	\mathbf{S}	0	0
	201	1980	1242	324	398	16	0	0	
1 A	Δ	A 256	Total	С	Ν	0	S	0	0
	А		1972	1238	323	395	16	0	0

• Molecule 2 is a protein called Flap endonuclease 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	D	354	Total 2791	C 1756	N 489	O 530	S 16	0	0

• Molecule 3 is a protein called Ribonuclease H2 subunit A.

Mol	Chain	Residues		At	AltConf	Trace			
3	Η	299	Total 2348	C 1483	N 401	O 453	S 11	0	0

• Molecule 4 is a protein called Ribonuclease H2 subunit B.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	G	196	Total 1598	C 1046	N 265	0 281	S 6	0	0

• Molecule 5 is a protein called Ribonuclease H2 subunit C.

Mol	Chain	Residues		At	oms	AltConf	Trace		
5	Ι	125	Total 951	C 609	N 172	0 167	${ m S} { m 3}$	0	0

• Molecule 6 is a DNA chain called upstream DNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	J	20	Total 407	C 200	N 61	O 126	Р 20	0	0

• Molecule 7 is a DNA chain called parent strand DNA.

Mol	Chain	Residues		A	toms	AltConf	Trace		
7	Е	31	Total 637	C 310	N 122	0 175	Р 30	0	0

• Molecule 8 is a DNA chain called downstream DNA.

Mol	Chain	Residues	Atoms			AltConf	Trace		
8	F	14	Total 284	C 140	N 40	O 90	Р 14	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain B: 75% 23% • Molecule 1: Proliferating cell nuclear antigen Chain C: 75% 24% GLU GLY SER • Molecule 1: Proliferating cell nuclear antigen Chain A: 75% 23% • Molecule 2: Flap endonuclease 1 Chain D: 76% 17% 7%
- Molecule 1: Proliferating cell nuclear antigen

GLY SER THR LYS LYS LYS LYS THR GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA CLYS CLY CLYS CLY

• Molecule 3: Ribonuclease H2 subunit A

Chain H:	86%		13% •
M1 G12 S17 S17 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	E75 E75 E77 E77 E77 E77 E76 L79 L100 L100 L100 C100 C100 C100 C100 C100	N108 V109 V110 V1114 V114 V114 V138 V138	D141 Y149 A168 B176 W219 W219 E222
V227 V227 V235 V235 V235 V255 V256 V266 V266 V266 V271 V271	00 11 11		
• Molecule 4: Ribonucle	ease H2 subunit B		
Chain G:	54%	9%	37%
MET ALA ALA ALA ALA CYS CYS CYS CYS CYS CIY CIZ CIZ CIZ CIZ CIZ CIZ CIZ CIZ CIZ CIZ	K 29 K 30 K 30 M 42 C 44 C 44 C 44 C 44 C 44 C 44 C 44 C	458 872 9111 9115 9115 9115 9115 9115	C125 K130 K136 K136 C10 C10 C10 C10 C10 C17 C17 C10 C10 C10 C10 C11 C12 C125 C125 C125 C125 C125 C125 C
ASP ASN ASN LYS LYS L164 L164 L164 L167 L176 L176 L176 N181	V189 CLM CLM CLM CLM CLM FTRR FTRR FTRR FTRR CLM CLM CLM CLM CLM CLM CLM CLM CLM CLM	LYS LYS K233 LEU FRO RUU SER SER SER LEU	PRO PRO PRO PRO PRO SER LLYS LLYS LLZU SER SER SER SER SER ASP PRO VAL
GLU LYS GLU ALA CYS CUU ASP THR THR THR LYS CUU CYS CUU	LYS SER SFR SFR SFR SFR MET THR MET ALA ALA ALA ALA ALA ALA ALA CIV	ASP LYS SER GLY MET LYS SER LYS SER ILYS SER THR THR PHE	GLY VAL LYS LYS LYS LYS LYS CLY GLY VAL VAL
• Molecule 5: Ribonucle	ease H2 subunit C		
Chain I:	62%	13% •	24%
MET MET SEU SEU SER SELU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	L31 L32 P33 C34 A37 A42 A42 R66 R66 R66	Product Market Mar	LYS PRO ASP ASP PRO LEU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
CLU LEU LEU CLU CLU ASP ASP ASP ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	A164 A164 E163 E163		
• Molecule 6: upstream	DNA		
Chain J:	80%		20%

 \bullet Molecule 7: parent strand DNA

Chain E: 74% 26%

29%

• Molecule 8: downstream DNA

71%

Chain F:

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	13906	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	2000	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
10101	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.29	0/1998	0.67	1/2699~(0.0%)
1	В	0.29	0/2006	0.63	2/2710~(0.1%)
1	С	0.30	0/2006	0.72	3/2710~(0.1%)
2	D	0.29	0/2838	0.65	2/3813~(0.1%)
3	Н	0.30	0/2397	0.65	2/3253~(0.1%)
4	G	0.28	0/1634	0.60	0/2201
5	Ι	0.34	0/977	0.72	2/1334~(0.1%)
6	J	0.56	0/453	1.13	0/697
7	Е	0.55	0/718	1.05	0/1106
8	F	0.55	0/315	1.21	0/484
All	All	0.33	0/15342	0.72	12/21007~(0.1%)

There are no bond length outliers.

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	Ι	135	GLU	CA-CB-CG	7.39	129.66	113.40
1	А	139	MET	CA-CB-CG	6.43	124.23	113.30
1	С	175	LEU	CA-CB-CG	6.35	129.90	115.30
2	D	67	MET	CA-CB-CG	5.97	123.44	113.30
5	Ι	134	LEU	CA-CB-CG	5.95	128.98	115.30
2	D	37	MET	CA-CB-CG	5.66	122.92	113.30
3	Н	17	SER	C-N-CA	5.40	135.20	121.70
1	С	150	ASP	CB-CG-OD1	5.37	123.14	118.30
1	С	221	LEU	CA-CB-CG	5.27	127.42	115.30
1	В	251	LEU	CA-CB-CG	5.26	127.40	115.30
1	В	151	LEU	CA-CB-CG	5.20	127.26	115.30
3	Н	79	LEU	CA-CB-CG	5.00	126.81	115.30

All (12) bond angle outliers are listed below:

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1972	0	1979	37	0
1	В	1980	0	1983	32	0
1	С	1980	0	1983	36	0
2	D	2791	0	2822	35	0
3	Н	2348	0	2323	27	0
4	G	1598	0	1641	21	0
5	Ι	951	0	947	18	0
6	J	407	0	234	4	0
7	Е	637	0	354	6	0
8	F	284	0	165	3	0
All	All	14948	0	14431	197	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (197) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:D:177:THR:HG22	2:D:179:ASP:H	1.59	0.64
2:D:192:ARG:HB3	2:D:205:GLN:HB2	1.80	0.64
1:A:103:PHE:HB2	1:A:112:SER:HB2	1.81	0.62
4:G:36:MET:HG3	5:I:15:HIS:HA	1.84	0.60
1:C:89:THR:HB	1:C:102:VAL:HB	1.85	0.59
2:D:190:LEU:HB3	2:D:207:PHE:HB2	1.86	0.58
2:D:222:GLN:HE21	2:D:254:LYS:HB3	1.68	0.58
1:B:105:ALA:HB2	1:B:110:LYS:HG2	1.86	0.57
2:D:160:GLU:HB2	2:D:182:CYS:HB3	1.85	0.57
1:C:37:LEU:HB3	1:C:50:LEU:HB3	1.86	0.57
1:C:49:GLN:HB3	1:C:248:LYS:HB2	1.87	0.57
1:A:72:LEU:O	1:A:76:SER:HB3	2.04	0.57
2:D:2:GLY:H	2:D:233:ASP:HB3	1.69	0.56
3:H:49:ILE:HD11	3:H:124:LEU:HB3	1.86	0.56
4:G:42:ASN:HB3	4:G:46:GLY:H	1.71	0.56
1:C:169:PHE:HB2	1:C:180:ILE:HB	1.88	0.56
3:H:250:GLU:HB3	5:I:37:ALA:HB3	1.88	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:18:ALA:HB2	1:C:218:ALA:HB2	1.88	0.55
1:C:226:THR:HB	1:C:238:GLU:HB3	1.88	0.55
2:D:339:ARG:NH2	1:C:43:SER:O	2.40	0.55
1:A:37:LEU:HD13	1:A:50:LEU:HB3	1.88	0.55
1:A:49:GLN:HB2	1:A:248:LYS:HB2	1.89	0.55
3:H:96:LEU:HG	3:H:100:LEU:HD23	1.89	0.55
3:H:114:ASN:ND2	3:H:149:TYR:OH	2.39	0.55
1:A:206:THR:HB	1:A:254:LYS:HB2	1.89	0.55
3:H:43:GLY:O	3:H:235:ARG:NH1	2.40	0.54
1:A:218:ALA:HB1	1:A:221:LEU:HD12	1.89	0.54
2:D:184:THR:HB	2:D:224:VAL:HG23	1.89	0.54
1:C:206:THR:HG23	1:C:254:LYS:HB2	1.89	0.54
1:C:75:MET:HA	1:C:78:ILE:HG12	1.90	0.54
1:A:105:ALA:HB2	1:A:110:LYS:HG2	1.88	0.53
1:A:2:PHE:HB2	1:A:92:ALA:H	1.73	0.53
2:D:33:ILE:HG13	2:D:176:ALA:HB3	1.90	0.53
1:B:113:ASP:HB3	1:A:179:ASN:HB2	1.89	0.53
3:H:268:ILE:HA	3:H:271:TYR:HB2	1.91	0.53
5:I:32:LEU:HG	5:I:34:CYS:H	1.73	0.53
1:B:161:SER:HB3	1:B:168:LYS:HB2	1.90	0.53
4:G:58:GLN:NE2	4:G:130:LYS:O	2.42	0.53
5:I:87:GLU:HB2	5:I:120:ILE:HA	1.91	0.53
1:C:212:LEU:HA	1:C:215:PHE:HD1	1.74	0.53
1:A:38:GLN:HE21	1:A:126:LEU:H	1.55	0.53
1:B:103:PHE:HB2	1:B:112:SER:HB3	1.90	0.53
2:D:6:LEU:HD23	2:D:180:MET:HB3	1.91	0.53
1:C:134:SER:H	1:C:230:SER:HB2	1.75	0.52
2:D:84:VAL:HG12	2:D:153:LEU:HB2	1.91	0.52
3:H:266:ARG:NH1	3:H:271:TYR:OH	2.42	0.52
1:B:87:ILE:HB	1:B:104:GLU:HG2	1.90	0.52
2:D:302:ASN:ND2	2:D:305:GLU:OE2	2.43	0.52
2:D:341:ASP:OD2	1:C:44:HIS:ND1	2.43	0.52
1:C:91:ARG:HB3	1:C:100:ALA:HB3	1.91	0.52
1:A:22:LEU:HG	1:A:23:ILE:HG23	1.91	0.52
1:A:89:THR:HB	1:A:102:VAL:HB	1.91	0.52
3:H:31:LEU:HD22	3:H:138:VAL:HG13	1.92	0.51
4:G:136:LYS:HE2	5:I:163:GLU:HG3	1.92	0.51
3:H:280:ARG:NH1	3:H:281:PRO:O	2.43	0.51
1:B:237:VAL:HB	1:B:249:TYR:HB2	1.93	0.51
1:C:168:LYS:HE3	1:C:179:ASN:HB2	1.93	0.51
2:D:47:ARG:NH2	2:D:50:GLY:O	2.42	0.51

	lous pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:89:THR:HB	1:B:102:VAL:HB	1.92	0.51
3:H:46:VAL:HG22	3:H:95:VAL:HG23	1.92	0.50
6:J:11:DT:H3	7:E:23:DA:H61	1.58	0.50
1:C:70:VAL:HG22	1:C:118:LEU:HD22	1.92	0.50
1:B:64:ARG:NH2	1:B:94:ASP:O	2.44	0.50
1:B:111:VAL:HB	1:A:181:LYS:HB2	1.93	0.50
2:D:182:CYS:HA	2:D:185:PHE:HB2	1.92	0.50
2:D:337:GLN:NE2	2:D:338:GLY:O	2.45	0.50
3:H:108:ARG:NH1	5:I:134:LEU:O	2.45	0.50
1:C:68:MET:SD	1:C:68:MET:N	2.85	0.50
1:C:13:LYS:HE3	1:C:80:LYS:HA	1.94	0.50
1:A:221:LEU:HD22	1:A:241:ILE:HG12	1.93	0.49
3:H:37:GLY:HA3	3:H:45:MET:HA	1.94	0.49
1:B:93:GLU:HB2	1:B:96:ALA:HB2	1.94	0.49
1:C:170:SER:HA	1:C:179:ASN:HA	1.93	0.49
1:A:19:LEU:HD13	1:A:23:ILE:HD11	1.94	0.49
1:A:8:GLN:OE1	1:A:10:SER:OG	2.31	0.49
1:A:221:LEU:HD13	1:A:241:ILE:HD11	1.94	0.49
1:C:140:PRO:HG3	1:C:193:GLU:HA	1.93	0.49
1:C:228:SER:HB2	1:C:236:VAL:HB	1.95	0.49
1:B:152:SER:HA	1:B:209:LEU:HD13	1.95	0.49
5:I:154:ALA:HA	5:I:157:ILE:HG22	1.95	0.49
1:C:243:ASP:N	1:C:243:ASP:OD1	2.46	0.48
7:E:11:DA:H4'	7:E:12:DA:H5'	1.95	0.48
2:D:70:ARG:NH2	2:D:195:THR:O	2.46	0.48
1:C:47:LEU:HB3	1:C:250:TYR:HB2	1.93	0.48
5:I:32:LEU:HD12	5:I:33:PRO:HD2	1.96	0.48
2:D:100:ARG:NH2	8:F:7:DT:OP2	2.45	0.47
6:J:11:DT:O4	7:E:22:DA:N6	2.47	0.47
2:D:298:TRP:O	2:D:332:ARG:NE	2.45	0.47
1:B:94:ASP:N	1:B:94:ASP:OD1	2.45	0.47
2:D:32:ALA:HA	2:D:82:VAL:HB	1.95	0.47
2:D:194:LEU:HA	2:D:204:ILE:HD12	1.95	0.47
1:A:14:LYS:HE3	1:A:220:PRO:HB2	1.97	0.47
1:A:140:PRO:HA	1:A:224:THR:HA	1.95	0.47
1:B:5:ARG:HB3	1:B:58:ASP:HB2	1.96	0.47
1:B:73:THR:OG1	1:B:77:LYS:NZ	2.47	0.47
3:H:280:ARG:NH2	4:G:44:CYS:SG	2.88	0.47
4:G:117:VAL:HG12	4:G:125:CYS:HB2	1.95	0.47
6:J:6:DT:O4	7:E:27:DA:N6	2.47	0.47
4:G:28:SER:OG	5:I:22:ARG:NH2	2.48	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:G:164:LEU:HD13	4:G:167:LEU:HD12	1.97	0.47
1:B:169:PHE:HB2	1:B:180:ILE:HB	1.96	0.47
2:D:249:LEU:HG	2:D:259:ILE:HG12	1.97	0.46
1:B:49:GLN:OE1	1:B:51:THR:OG1	2.33	0.46
1:C:158:VAL:HB	1:C:209:LEU:HD21	1.98	0.46
1:A:184:GLN:HA	1:A:197:ILE:HD12	1.96	0.46
1:C:146:ARG:NH2	1:A:81:CYS:O	2.48	0.46
1:A:15:VAL:HG23	1:A:16:LEU:HD12	1.98	0.46
1:B:38:GLN:NE2	1:B:126:LEU:O	2.47	0.46
1:B:175:LEU:HD13	1:C:74:SER:HB2	1.97	0.46
2:D:64:LEU:O	2:D:68:PHE:HB3	2.16	0.46
1:A:139:MET:HB2	1:A:195:VAL:HG13	1.98	0.46
3:H:76:ARG:HG2	3:H:180:ILE:HD11	1.97	0.46
3:H:254:TRP:H	3:H:258:ALA:HB3	1.81	0.46
1:C:176:GLY:HA3	1:A:116:MET:HA	1.98	0.46
8:F:6:DT:H2"	8:F:7:DT:H5"	1.98	0.46
4:G:16:HIS:HB2	5:I:84:MET:HB3	1.98	0.46
1:B:182:LEU:HD23	1:B:197:ILE:HD11	1.97	0.45
2:D:27:PHE:O	2:D:339:ARG:NH1	2.45	0.45
8:F:16:DA:H2"	8:F:17:DT:H5"	1.96	0.45
2:D:68:PHE:HB2	2:D:144:LEU:HD21	1.99	0.45
1:A:40:MET:SD	1:A:44:HIS:ND1	2.89	0.45
1:B:47:LEU:HB3	1:B:250:TYR:HB2	1.97	0.45
4:G:26:ASP:O	4:G:29:LYS:NZ	2.49	0.45
4:G:79:VAL:HG11	5:I:38:VAL:HG13	1.99	0.45
1:C:230:SER:OG	1:C:231:ALA:N	2.50	0.45
1:B:137:VAL:HB	1:B:227:LEU:HB2	1.99	0.45
1:B:226:THR:HB	1:B:238:GLU:HB2	1.98	0.45
3:H:111:TYR:OH	3:H:119:ASP:OD2	2.34	0.45
5:I:30:HIS:HB3	5:I:132:TRP:HE1	1.82	0.44
2:D:134:THR:O	2:D:138:ASN:ND2	2.50	0.44
4:G:30:LYS:NZ	4:G:56:CYS:O	2.50	0.44
4:G:174:THR:HA	4:G:177:ALA:HB3	1.98	0.44
1:A:41:ASP:OD1	1:A:45:VAL:N	2.48	0.44
4:G:111:GLN:NE2	4:G:115:GLN:O	2.51	0.44
1:C:15:VAL:HG13	1:C:16:LEU:HD12	1.99	0.44
1:A:58:ASP:N	1:A:58:ASP:OD1	2.51	0.44
3:H:141:ASP:HB2	3:H:168:ALA:HB3	2.00	0.44
2:D:81:PRO:HG2	2:D:150:ILE:HG21	2.00	0.44
1:A:49:GLN:HG2	1:A:250:TYR:HE1	1.83	0.44
1:A:147:ILE:HB	1:A:180:ILE:HD13	1.99	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:D:52:VAL:HG13	2:D:54:GLN:HG3	2.00	0.44
4:G:142:THR:HA	4:G:159:SER:HB3	1.99	0.43
5:I:138:PRO:HB2	5:I:142:ALA:HB2	2.00	0.43
1:B:162:CYS:SG	1:B:163:ALA:N	2.91	0.43
3:H:68:SER:OG	3:H:176:SER:OG	2.34	0.43
1:B:243:ASP:N	1:B:243:ASP:OD1	2.50	0.43
3:H:12:GLY:HA2	3:H:100:LEU:HD13	1.99	0.43
1:A:136:VAL:HA	1:A:228:SER:HA	2.00	0.43
1:B:4:ALA:HB3	1:B:90:LEU:HB2	1.99	0.43
1:B:136:VAL:HB	1:B:198:GLU:HG2	2.01	0.43
1:C:5:ARG:HB3	1:C:58:ASP:HB3	2.00	0.43
1:B:52:LEU:HA	1:B:245:GLY:HA3	2.01	0.43
3:H:110:LYS:HA	3:H:110:LYS:HD2	1.78	0.43
3:H:219:TRP:HA	3:H:222:GLU:HG3	2.01	0.43
1:A:78:ILE:HG23	1:A:114:TYR:CD2	2.54	0.43
7:E:20:DT:H2"	7:E:21:DA:H5"	2.00	0.43
1:C:172:SER:OG	1:C:173:GLY:N	2.52	0.43
1:A:34:GLY:HA2	1:A:54:SER:HB3	2.01	0.43
3:H:79:LEU:HD11	3:H:180:ILE:HG12	2.01	0.42
4:G:42:ASN:N	4:G:47:GLU:O	2.52	0.42
6:J:7:DT:H2"	6:J:8:DT:H5"	2.01	0.42
1:B:211:TYR:HA	1:B:214:PHE:HD2	1.82	0.42
1:B:14:LYS:HD3	1:B:220:PRO:HG2	1.99	0.42
4:G:177:ALA:O	4:G:181:ASN:ND2	2.52	0.42
3:H:106:LEU:O	5:I:66:ARG:NE	2.53	0.42
2:D:40:TYR:HE1	2:D:132:LYS:HA	1.83	0.42
1:C:159:VAL:HA	1:C:206:THR:HA	2.01	0.42
2:D:178:GLU:HG3	2:D:193:HIS:H	1.85	0.42
1:A:25:GLU:HA	1:A:71:ASN:HA	2.02	0.42
4:G:72:SER:HB2	5:I:32:LEU:HD23	2.02	0.42
1:C:19:LEU:HD11	1:C:48:VAL:HG11	2.01	0.41
1:A:81:CYS:SG	1:A:114:TYR:OH	2.73	0.41
2:D:229:LEU:HD11	2:D:259:ILE:HD13	2.02	0.41
4:G:178:LEU:HA	4:G:181:ASN:HB2	2.02	0.41
3:H:227:VAL:HG11	5:I:42:ALA:HB1	2.02	0.41
1:C:212:LEU:HA	1:C:212:LEU:HD23	1.93	0.41
3:H:105:MET:HA	3:H:111:TYR:HB3	2.03	0.41
3:H:37:GLY:O	3:H:235:ARG:NH2	2.53	0.41
1:A:75:MET:HA	1:A:78:ILE:HD12	2.01	0.41
2:D:134:THR:OG1	2:D:135:LYS:N	2.53	0.41
5:I:69:ARG:HG3	5:I:135:GLU:HA	2.03	0.41

	Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
4:G:55:MET:SD	4:G:55:MET:N	2.94	0.41
1:C:147:ILE:O	1:C:151:LEU:HB2	2.21	0.41
7:E:10:DA:H2"	7:E:11:DA:H2'	2.03	0.41
3:H:75:GLU:OE1	3:H:78:ARG:NH2	2.52	0.40
5:I:75:VAL:HA	5:I:76:PRO:HD3	1.97	0.40
1:A:239:TYR:HB2	1:A:247:LEU:HB3	2.02	0.40
1:B:41:ASP:OD1	1:B:41:ASP:N	2.49	0.40
1:B:54:SER:HA	1:B:57:PHE:HD2	1.87	0.40
1:B:239:TYR:HB2	1:B:247:LEU:HB2	2.03	0.40
2:D:133:VAL:HG13	2:D:137:HIS:HB2	2.03	0.40
1:A:137:VAL:HG22	1:A:197:ILE:HG12	2.03	0.40
1:C:159:VAL:O	1:C:170:SER:OG	2.35	0.40
1:C:237:VAL:HB	1:C:249:TYR:HB2	2.03	0.40
2:D:92:LEU:HB3	2:D:234:TYR:HB3	2.04	0.40
2:D:200:LYS:HA	2:D:200:LYS:HD3	1.90	0.40
4:G:178:LEU:HA	4:G:181:ASN:HD22	1.87	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	254/261~(97%)	245~(96%)	9 (4%)	0	100	100
1	В	255/261~(98%)	250 (98%)	5 (2%)	0	100	100
1	С	255/261~(98%)	243~(95%)	12 (5%)	0	100	100
2	D	352/380~(93%)	338 (96%)	14 (4%)	0	100	100
3	Η	297/299~(99%)	277~(93%)	20 (7%)	0	100	100
4	G	190/312~(61%)	183 (96%)	7 (4%)	0	100	100
5	Ι	121/164 (74%)	118 (98%)	3 (2%)	0	100	100
All	All	1724/1938~(89%)	1654 (96%)	70 (4%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers Percentil		ntiles
1	А	224/228~(98%)	224 (100%)	0	100	100
1	В	225/228~(99%)	224 (100%)	1 (0%)	89	91
1	С	225/228~(99%)	224 (100%)	1 (0%)	89	91
2	D	303/322~(94%)	301~(99%)	2(1%)	81	87
3	Н	257/257~(100%)	256 (100%)	1 (0%)	89	91
4	G	179/277~(65%)	179~(100%)	0	100	100
5	Ι	98/132~(74%)	98 (100%)	0	100	100
All	All	1511/1672~(90%)	1506 (100%)	5 (0%)	90	92

All (5) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	В	146	ARG
2	D	77	ASN
2	D	345	LYS
3	Н	280	ARG
1	С	20	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (1) such side chains are listed below:

Mol	Chain	Res	Type
1	А	49	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

