

wwPDB EM Validation Summary Report (i)

Mar 11, 2025 - 01:05 PM EDT

PDB ID	:	6OSK
EMDB ID	:	EMD-20184
Title	:	m RF1 accommodated 70S complex at 60 ms
Authors	:	Fu, Z.; Indrisiunaite, G.; Kaledhonkar, S.; Shah, B.; Sun, M.; Chen, B.; Gras-
		succi, R.A.; Ehrenberg, M.; Frank, J.
Deposited on	:	2019-05-01
Resolution	:	3.60 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev117
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41.4

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.60 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	EM structures		
INTEGLIC	$(\# {\rm Entries})$	$(\# { m Entries})$		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	1	2903	7%79%	21%
2	2	1534	80%	20%
3	3	120	81%	19%
4	4	9	67%	33%
5	В	271	99%	·
6	С	209	98%	·
7	D	201	<u>6%</u> 99%	·
8	Е	177	35%	

Mol	Chain	Length	Quality of chain
9	F	175	16% 99%
10	G	149	98%
11	J	142	100%
12	K	123	7%
12	T	144	
10	M	194	99% ·
14	IVI	130	99% •
15	N	119	99% .
16	0	116	98%
17	Р	114	98%
18	Q	117	99%
19	R	103	97% •
20	S	110	
20	Т	04	11%
21	1	94	99% ·
22	U	103	100%
23	V	94	99%
24	W	76	100%
25	v	77	8%
20	Λ	11	99% ·
26	Y	62	100%
27	Z	58	98%
28	a	66	97% •
29	b	56	98%
30	0	52	6%
	U .	02	30 /0 ·
31	d	46	98% .
32	е	64	97%
33	f	38	100%

Continued from previous page...

Conti	nued fron	<i>i</i> previous	page	
Mol	Chain	Length	Quality of chain	
34	g	225	27%	
35	h	208	15%	·
36	i	205	48% 100%	
37	j	156	99%	•
38	k	104	10%	
39	1	151	40% 99%	
40	m	129	100%	
41	n	127	98%	•
42	О	99	99%	<mark>.</mark>
43	р	117	99%	•
44	q	123	98%	•
45	r	116	100%	
46	s	100	100%	
47	t	88	99%	<mark>.</mark>
48	u	82	99%	<mark>.</mark>
49	V	80	99%	
50	W	66	100%	
51	x	83	98%	•
52	У	86	100%	
53	Z	70	100%	
54	А	259	98%	•
55	5	76	71% 67%	26% •
56	6	3	67%	33%

2 Entry composition (i)

There are 58 unique types of molecules in this entry. The entry contains 146659 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues				AltConf	Trace		
1	1	2903	Total 62336	C 27816	N 11470	O 20147	Р 2903	0	0

• Molecule 2 is a RNA chain called 16S ribosomal RNA.

Mol	Chain	Residues		1		AltConf	Trace		
2	2	1534	Total 32929	C 14693	N 6041	O 10661	Р 1534	0	0

• Molecule 3 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		At	AltConf	Trace			
3	3	120	Total 2569	C 1144	N 468	0 837	Р 120	0	0

• Molecule 4 is a RNA chain called mRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	4	9	Total 184	C 83	N 26	O 66	Р 9	0	0

• Molecule 5 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	В	271	Total 2082	C 1288	N 423	0 364	S 7	0	0

• Molecule 6 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	С	209	Total 1565	C 979	N 288	0 294	$\frac{S}{4}$	0	0

• Molecule 7 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	D	201	Total 1552	C 974	N 283	O 290	${ m S}{ m 5}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms		Atoms					
8	Е	177	Total 1410	C 899	N 249	O 256	S 6	0	0			

• Molecule 9 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	F	175	Total 1313	C 826	N 241	0 244	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 10 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	G	149	Total	С	Ν	0	\mathbf{S}	0	0
10	ŭ	145	1111	699	197	214	1	0	0

• Molecule 11 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	J	142	Total 1129	C 714	N 212	0 199	${S \atop 4}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	K	123	Total 946	C 593	N 181	0 166	S 6	0	0

• Molecule 13 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	L	144	Total 1053	$\begin{array}{c} \mathrm{C} \\ 654 \end{array}$	N 207	O 190	${ m S} { m 2}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	М	136	Total 1074	C 686	N 205	O 177	S 6	0	0

• Molecule 15 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Ν	119	Total 951	C 588	N 195	0 163	${ m S}{ m 5}$	0	0

• Molecule 16 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
16	О	116	Total 892	C 552	N 178	O 162	0	0

• Molecule 17 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Р	114	Total 917	С 574	N 179	0 163	S 1	0	0

• Molecule 18 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
18	Q	117	Total 947	C 604	N 192	0 151	0	0

• Molecule 19 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	R	103	Total 816	C 516	N 153	0 145	${S \over 2}$	0	0

• Molecule 20 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	S	110	Total 857	C 532	N 166	0 156	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Т	94	Total 746	C 470	N 140	0 134	${ m S} { m 2}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
22	U	103	Total 788	C 498	N 148	0 142	0	0

• Molecule 23 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	V	94	Total 753	C 479	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
24	W	76	Total 582	C 360	N 117	0 104	S 1	0	0

• Molecule 25 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	Х	77	Total 625	C 388	N 129	O 106	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
26	v	62	Total	С	N	0	S	0	0
20	1	02	501	308	98	94	1	0	0

• Molecule 27 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
27	Z	58	Total 448	C 281	N 87	0 78	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
28	a	66	Total 522	C 323	N 99	0 94	S 6	0	0

• Molecule 29 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
29	b	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 30 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
30	С	52	Total 426	С 275	N 78	O 73	0	0

• Molecule 31 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
31	d	46	Total 377	C 228	N 90	O 57	${ m S} { m 2}$	0	0

• Molecule 32 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
32	е	64	Total 504	C 323	N 105	0 74	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 33 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
33	f	38	Total	С	Ν	Ο	S	0	0
00	1	00	302	185	65	48	4	0	0

• Molecule 34 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	g	225	Total 1760	C 1113	N 316	O 323	S 8	0	0

• Molecule 35 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
35	h	208	Total 1636	C 1036	N 307	O 290	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		Ate	AltConf	Trace			
36	i	205	Total 1643	C 1026	N 315	O 298	$\frac{S}{4}$	0	0

• Molecule 37 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	j	156	Total 1152	C 717	N 217	0 212	S 6	0	0

• Molecule 38 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	k	104	Total 848	C 536	N 153	0 152	S 7	0	0

• Molecule 39 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	1	151	Total 1181	C 735	N 227	0 215	$\frac{S}{4}$	0	0

• Molecule 40 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	m	129	Total 979	C 616	N 173	0 184	S 6	0	0

• Molecule 41 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms		AltConf	Trace	
41	n	127	Total 1022	C 634	N 206	0 179	${ m S} { m 3}$	0	0

• Molecule 42 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	0	99	Total 790	$\begin{array}{c} \mathrm{C} \\ 495 \end{array}$	N 151	0 143	S 1	0	0

• Molecule 43 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	р	117	Total 877	C 540	N 174	O 160	${ m S} { m 3}$	0	0

• Molecule 44 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	q	123	Total 957	C 591	N 196	0 165	${f S}{5}$	0	0

• Molecule 45 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	r	116	Total	С	Ν	Ο	\mathbf{S}	0	0
40	1	110	900	558	181	158	3	0	0

• Molecule 46 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues		At	oms			AltConf	Trace
46	s	100	Total 805	C 499	N 164	0 139	${ m S} { m 3}$	0	0

• Molecule 47 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	t	88	Total 714	C 439	N 144	O 130	S 1	0	0

• Molecule 48 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues		At	oms			AltConf	Trace
48	u	82	Total 649	C 406	N 128	0 114	S 1	0	0

• Molecule 49 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	v	80	Total 648	C 411	N 121	0 113	${ m S} { m 3}$	0	0

• Molecule 50 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Ate	oms	Atoms					
50	W	66	Total 544	C 344	N 102	O 97	S 1	0	0		

• Molecule 51 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues		At	oms			AltConf	Trace
51	x	83	Total 663	C 424	N 126	0 111	${S \atop 2}$	0	0

• Molecule 52 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	у	86	Total	C 414	N 120	0	S 2	0	0
			009	414	139	114	3		

• Molecule 53 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
53	Z	70	Total 589	C 366	N 125	O 97	S 1	0	0

• Molecule 54 is a protein called Peptide chain release factor 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	А	259	Total 2014	C 1235	N 382	O 389	S 8	0	0

• Molecule 55 is a RNA chain called P-tRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace		
55	5	76	Total 1627	C 727	N 296	0 527	Р 76	S 1	0	0

• Molecule 56 is a protein called FME-PHE.

Mol	Chain	Residues	Atoms			AltConf	Trace		
56	6	3	Total	С	Ν	0	\mathbf{S}	0	0
50	0	0	32	24	3	4	1	0	0

• Molecule 57 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
57	1	292	Total Mg 292 292	0
57	2	1	Total Mg 1 1	0
57	3	8	Total Mg 8 8	0
57	С	1	Total Mg 1 1	0
57	b	1	Total Mg 1 1	0
57	f	1	Total Mg 1 1	0
57	i	1	Total Mg 1 1	0
57	5	2	$\begin{array}{ccc} \text{Total} & \text{Mg} \\ 2 & 2 \end{array}$	0

• Molecule 58 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
58	a	1	Total Zn 1 1	0
58	f	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 23S ribosomal RNA

Chain C:	98%	
M1 E17 B18 R59 A136 C153 G153 G153 G153 G153 G153 G153 G153 G		
• Molecule 7: 50S ribosomal protein	L4	
Chain D:	99%	
M1 K6 b7 b8 d9 d9 E12 E12 E122 E122 E122 E122 E122 E123 E123		
• Molecule 8: 50S ribosomal protein	L5	
Chain E:	100%	•
A2 K3 D10 L16 E19 E19 M28 E19 M28 E19 M23 E14 A45 M45 M45 M45 M45 M45 M45	A55 A55 A55 A55 A55 A55 A55 A55 A55 A55	R110 R111 R112 F114 R115 G116 S118 A119 K120
D1233 G124 R125 M130 E134 Q135 F133 F133 F133 F133 F133 F133 F133 F	V149 R150 D163 C166 R167 F173 F173 F173 F173 F175 R173 F175	
• Molecule 9: 50S ribosomal protein	L6	
Chain F:	99%	
22 K6 A13 A13 A13 C14 N20 C21 C21 C21 C21 C21 C21 C21 C21 C21 C21	G57 A59 A59 B11 B1 C100 G100 G100 A119 G120 A119 G120 B166 B165 B165 B166 B166 B166	E173
• Molecule 10: 50S ribosomal protei	n L9	
Chain G:	98%	•
MI P7 P7 P7 P7 P3 P3 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	A62 E53 A65 E55 A65 A65 A65 A63 A65 A65 A65 A65 A65 A65 A65 A65 A65 A65	Ard
K89 F91 F91 G92 G92 S93 G95 F94 G95 R97 D98 A100 A100 A100 A100 A100 A100 A100 A10	LIOS A111 A111 A111 A111 A115 A115 A115 A11	5131 F132 Q133 V134 H135 F135 F135 F135 F135 F135 F135 F135 F
E149		
• Molecule 11: 50S ribosomal protei	n L13	
Chain J:	100%	

WORLDWIDE PROTEIN DATA BANK

Chain Q:
\bullet Molecule 19: 50S ribosomal protein L21
Chain R: 97% ·
M1 E37 E45 F53 V65 F53 C56 G56 G56 G56 C56 C56
\bullet Molecule 20: 50S ribosomal protein L22
Chain S: 99% .
\bullet Molecule 21: 50S ribosomal protein L23
Chain T: 99%
M1 E52 E52 R69 R69 G71 C72 C72 C72 C72 C72 C72 C72 C72 C72 C72
\bullet Molecule 22: 50S ribosomal protein L24
Chain U: 100%
A2 44 743 743 755 755 755 755 755 755 755 75
\bullet Molecule 23: 50S ribosomal protein L25
Chain V: 99%
M1 N5 A6 A6 A6 A33 C33 C33 C33 C33 C33 C33 C33 C33 C33
\bullet Molecule 24: 50S ribosomal protein L27
Chain W:

• Molecule 25: 50S ribosoma	l protein L28			
Chain X:	99%	·		
82 R27 E41 K44 B60 B60 K72 Y78				
• Molecule 26: 50S ribosoma	l protein L29			
Chain Y:	100%			
K2 G35 G35 G35 G62 A63				
• Molecule 27: 50S ribosoma	l protein L30			
Chain Z:	98%	·		
R3 R31 E50				
• Molecule 28: 50S ribosoma	l protein L31			
Chain a:	100% 97%			
Chain a:	100% 97% 87% 87% 87% 87% 87% 87% 87% 87% 87% 8	L34 D35 V36 V36 C37 C38 C38 C38 C40 H41 P42 P42 P42	F 44 • • • • • • • • • • • • • • • • • •	R59
Chain a:	100% G18 019 019 020 020 020 020 020 020 020 02	L34 D35 V36 C37 C37 C37 C37 C40 H41 F42 F42 F43	F44 145 646 648 648 648 753 753 753 755 755 755 755 755 755 755	F60
Chain a:	100% 97% 5 문 문 월 월 전 월 월 참 월 월 월 월 월 월 월 월 월 월 월 월 월 월	L34 D35 V36 C37 C37 C37 C37 C40 H41 H41 F43	F44 145 646 648 648 743 753 455 753 455 655 655 753 753 753 753 753 753 753	R59
Chain a:	100% 97% 15 문 한 2 15 전 전 15 12 13 12 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13		F44 145 646 847 849 849 849 851 854 654 654 655 855 855 855 855 855 855 855 855 855	RS9
Chain a:	100% 97% 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한	L34 D35 V35 C37 C38 C40 H41 H41 H41 H42	F44 145 646 847 849 849 849 851 852 654 654 655 655 855 855 855 855 855 855 855 855	RS9
Chain a:	100% 97% 5 변 한 호 호 호 호 호 호 호 호 호 호 호 호 호 호 호 l protein L32 98%	L34 D35 V36 V36 C37 C37 C40 H41 H41 H41 H41 H41 H41 H41 H41 H41 H41	F44 T45 646 746 748 749 748 751 753 654 753 753 753 753 753 755 755 755 755 755	
Chain a:	100% 97% 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L 44 F 43 F 44 F 44	744 745 745 646 646 747 747 749 748 749 749	

 \bullet Molecule 31: 50S ribosomal protein L34

Chain d:	98% •	
M1 142 Ka6		
• Molecule 32: 50S ribosomal prote	ein L35	
Chain e:	97% .	
P2 H31 132 B54 465 A65 A65		
• Molecule 33: 50S ribosomal prote	ein L36	
Chain f:	100%	
MI G38 C38		
• Molecule 34: 30S ribosomal prote	ein S2	
Chain g:	100%	
T3 V4 S5 M6 R7 D8 M6 K11 A12 C13 C13 C13 C13 C13 C13 C13 C13 C13 C13	A53 K194 R174 G65 R174 B82 B88 G65 B88 G65 B123 C124 C124 C124 C124 C124 C124 C124 C124	F125 D127 K128 L129 K131 K131 L125 M136 R139 E140
L141 E142 K143 L144 E145 E145 K152 M154 M154 G155 G155 G155 C155 C155 L157 L157 D159 A160 L161 L161 D165 D165	P193 D194 D205 A209 A209 C226 Q227	
• Molecule 35: 30S ribosomal prote	ein S3	
Chain h:	99%	
22 K27 K27 K25 K245 K45 A48 K49 A48 K49 K72 C78 K79 K79 K70 K70	G81 E82 B83 P83 P83 F86 F86 K86 K89 K89 C96 C96 C96 K107 K107 K127 K127 K164 K164 K164 K164 K166 K166 K166 K187 K187 K186	D181 1132 1133 1133 1130 1208
• Molecule 36: 30S ribosomal prote	ein S4	
48%	100%	
A2 K8 K10 K10 K10 C15 C15 C15 C15 C16 C16 C16 C12 C24 K22 C24 K25 C24 C24 C25 C24 C25 C24 C25 C24 C25 C24 C25 C24 C25 C24 C25 C24 C25 C24 C25 C26 C27 C26 C27 C27 C27 C27 C27 C27 C27 C27 C27 C27	129 129 134 134 134 134 134 134 134 134 134 134	R63 I 64 G66 G66 R70 R73 R73 R73 R77 K77 K81 C81 C84 C84
RB5 ← E95 ← L98 ← R104 ← A109 ← A119 ← A114 ← C117 ← L117 ← L117 ← R123 ← N124 ← R128 ←	Q136 V137 S138 P139 P139 N140 V143 E147 K148 K148 C143 C155 C155 A157 C159 C159 C159 C159 C159 C159 C159 C159	E165 E166 K167 E172 E172 D174 A175 G176 K177 M178 E179 E179 K183
	WORLDWIDE PROTEIN DATA BANK	

R184 K185 P186 E187 R188 R188 P190 L191 S193 A193 A193 A193 L191 S193 H195 H195 H198 H198	2202 2306 2306			
• Molecule 37: 30S riboson	nal protein S5			
Chain j:	99%			
E10 R29 D142 E145 E145 L165 ♦				
• Molecule 38: 30S riboson	al protein S6			
Chain k:	100%		•	
M1 R2 D13 E16 G20 G20 C2 R24 F23 F23 F23 F23 F23 F23 F23 F23 F23 F23	NI52 (1000) (100			
• Molecule 39: 30S riboson	al protein S7			
Chain l:	99%	:		
P2 R3 R4 R5 R5 R1 C3 R10 R10 R10 F11 P14 P15 P15	G19 \$20 \$21 \$22 \$22 \$22 \$23 \$248 \$248 \$257 \$57 \$57 \$57 \$57	L59 E60 A61 F62 A65 L66 E67 N68 E74 V75 K76 K76 S77	R78 R79 R79 C31 C32 C33 C33 C33 C33 C33 C33 C33 C32 C32	AULY
K110 R111 G112 D113 K114 K114 L124 E129 K130 K131 G132 K131 K136 K137	R138 E139 D140 V141 H142 R143 A147 A152			
• Molecule 40: 30S riboson	al protein S8			
Chain m:	100%		-	
S2 T55 E73 E91 B113 M117 A130				
• Molecule 41: 30S riboson	al protein S9			
Chain n:	98%	·		
N4 Q5 K22 K27 K27 K27 K27 K27 K27 K27 K27 K21 C42 C42 C42 C43 C49 K49 K49 K49 K20 K22 K27 K22 K27 K22 K22 K22 K22 K22 K22	P51 L52 V55 M57 M57 M57 B52 B39 Y30 D62 B31 C32 C32 C32 C32 C32 C32 C32 C32 C32 C32	833 194 197 896 896 896 810 9110 9110 8113 8113 8113	20	
• Molecule 42: 30S riboson	nal protein S10			
Chain o:	99%			

R5 16 16 81 81 81 81 82 82 82 82 82 82 82 82 83 83 83 83 83 83 83 83 83 83 84 85 84 85 85 85 85 85 85 85 85 85 85 85 85 85	K59 D75 V77 V177 V177 V177 V177 V121 V102 V103 V103 V103
• Molecule 43: 30S ribosomal protein S	11
Chain p:	99% •
R13 K14 B17 D18 H24 R37 C51 F52 R55 R53 R56 R53 R56 R56 R56 R56 R56 R57 R56 R56 R57 R56 R57 R56 R57 R57 R57 R57 R57 R57 R57 R57 R57 R57	A103 F105 F106 M119
• Molecule 44: 30S ribosomal protein S	12
Chain q:	98% •
A2 R9 A13 A13 A14 K15 V16 A17 K13 K16 F61 F61 F61 F61 F61 F62 F62 F62 R63 R63 R63 R63 R63 R63 R63 R64 R64	1009 K123 1124 ← ←
• Molecule 45: 30S ribosomal protein S	13
Chain r:	100%
A2 R3 R3 H12 K13 A35 A35 A35 A35 A35 A35 A35 A35 A35 A3	K62 F63 B68 R71 R71 M75 M81 M81 M81 B82 C94 C94 C94 C94 C94 C94 C94 C94 C94 C94
• Molecule 46: 30S ribosomal protein S	14
Chain s:	100%
A2 K7 K7 A22 A22 A22 A22 A25 A25 A35 A35 A35 A35 A35 A35 A35 A35 A35 A3	
• Molecule 47: 30S ribosomal protein S	15
Chain t:	99% •
22 E14 A19 A19 A19 A19 B18 B3 B8 R88 R88 R88 R88 R88	
• Molecule 48: 30S ribosomal protein S	16
Chain u:	99% •
M1 844 845 845 845 845 846 848 848 855 855 855 855 855 855 855 855	
• Molecule 49: 30S ribosomal protein S	17

24%		
Chain v:	99%	·
K4 15 16 17 17 17 12 18 12 12 12 12 12 12 12 12 12 12 12 12 12	K43 K55 K81 K81 K81 K81 K81 K81	
• Molecule 50: 30S ribose	omal protein S18	
Chain w:	100%	
F10 C11 R12 F13 F13 F13 F13 C114 C114 C114 C114 C114 C117 C117 C117	R48 D72 R73 H74 Q75	
• Molecule 51: 30S ribose	omal protein S19	
Chain x:	98%	
72 K7 K1 K13 K21 S25 S25 S25 S25 S25 S25 S25 S25 S25 S25	R32 L31 R44 R44 F61 F61 F61 F61 F61 F61 F61 F61 F63 R78 R81 G68 R81 R81 G82 H83 A84 A84	
• Molecule 52: 30S ribose	omal protein S20	
Chain y:	100%	
A2 N3 14 E15 E15 A38 A38 A41 C42 A41 C42 A41 C42 A178 N78		
• Molecule 53: 30S ribose	omal protein S21	
Chain z:	100%	
••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	
P2 V3 K5 K6 K7 K7 B3 B10 F11 F12 D13 K25 K25	L29 430 831 732 847 847 847 865 865 865 865 865 865 865 865 865 865	
• Molecule 54: Peptide cl	hain release factor 1	
Chain A:	98%	.
q97 V98 L99 L100 L101 P102 P105 P105 E108 E108	R143 W144 R145 E147 E147 E147 E145 P169 P169 P210 P2116 P2116 P2116 P2116 P2116 P2116 P2116	A220 A221 L222 R223 1224 T226 2225 2229 2223 7226 4233 6231 A232 6233 7235 7239 7239 7239 7239 7239 7239 7239 7239 7239 72377 72377 72377 72377 72377 72377 72377 72377 72377 72377 72
R2 12 12 12 12 12 12 12 12 12 12 12 12 12	822 822 822 822 822 822 822 822 822 822	2 23 23 23 23 23 23 23 23 23 23 23 23 23
q346 E347 D351 q352 L353 A354 A355		

W O R L D W I D E PROTEIN DATA BANK

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	202103	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI POLARA 300	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	41.6	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.421	Depositor
Minimum map value	-0.221	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.019	Depositor
Recommended contour level	0.06	Depositor
Map size (Å)	421.12, 421.12, 421.12	wwPDB
Map dimensions	256, 256, 256	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.645, 1.645, 1.645	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 3TD, 6MZ, FME, H2U, 5MU, OMU, MG, G7M, UR3, 2MA, OMG, PSU, 1MG, 2MG, OMC, MA6, ZN, 0TD, 5MC, 4SU, 4OC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	l angles
	Ullaili	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.91	0/69286	0.97	0/108087
2	2	0.67	0/36590	0.93	0/57074
3	3	0.58	0/2872	0.94	0/4478
4	4	0.78	0/203	1.04	0/312
5	В	0.52	0/2121	0.61	0/2852
6	С	0.50	0/1586	0.61	0/2134
7	D	0.47	0/1571	0.57	0/2113
8	Е	0.34	0/1434	0.55	0/1926
9	F	0.33	0/1333	0.53	0/1805
10	G	0.33	0/1122	0.56	0/1515
11	J	0.50	0/1152	0.56	0/1551
12	K	0.51	0/955	0.61	0/1279
13	L	0.45	0/1062	0.62	0/1413
14	М	0.45	0/1093	0.57	0/1460
15	Ν	0.50	0/964	0.63	0/1289
16	0	0.33	0/902	0.55	0/1209
17	Р	0.47	0/929	0.57	0/1242
18	Q	0.60	0/960	0.58	0/1278
19	R	0.50	0/829	0.62	0/1107
20	S	0.50	0/864	0.58	0/1156
21	Т	0.42	0/752	0.56	0/1005
22	U	0.43	0/796	0.54	0/1062
23	V	0.36	0/766	0.54	0/1025
24	W	0.48	0/589	0.55	0/779
25	Х	0.42	0/635	0.54	0/848
26	Y	0.34	0/502	0.51	0/667
27	Ζ	0.42	0/452	0.60	0/605
28	a	0.28	0/531	0.50	0/709
29	b	0.46	0/450	0.63	0/599
30	с	0.40	0/433	0.59	0/576
31	d	0.55	0/380	0.62	0/498

Mal	Chain	Bond lengths		Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
32	е	0.47	0/513	0.62	0/676
33	f	0.46	0/303	0.58	0/397
34	g	0.34	0/1791	0.54	0/2413
35	h	0.36	0/1663	0.54	0/2241
36	i	0.32	0/1665	0.51	0/2227
37	j	0.42	0/1165	0.59	0/1568
38	k	0.37	0/867	0.58	0/1171
39	l	0.32	0/1195	0.53	0/1602
40	m	0.39	0/989	0.55	0/1326
41	n	0.34	0/1034	0.57	0/1375
42	0	0.36	0/800	0.59	0/1082
43	р	0.36	0/893	0.51	0/1205
44	q	0.43	0/960	0.65	0/1286
45	r	0.32	0/909	0.57	0/1215
46	s	0.33	0/817	0.48	0/1088
47	t	0.34	0/722	0.55	0/964
48	u	0.37	0/659	0.58	0/884
49	V	0.34	0/657	0.57	0/881
50	W	0.36	0/553	0.54	0/743
51	Х	0.32	0/680	0.51	0/915
52	у	0.31	0/675	0.48	0/895
53	Z	0.33	0/597	0.52	0/792
54	A	0.39	0/2046	0.61	0/2759
55	5	0.52	0/1704	0.95	0/2654
56	6	0.72	0/23	0.73	0/29
All	All	0.73	0/157994	0.87	0/236041

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
5	В	269/271~(99%)	254 (94%)	15 (6%)	0	100	100
6	\mathbf{C}	207/209~(99%)	195~(94%)	10 (5%)	2(1%)	13	46
7	D	199/201~(99%)	190 (96%)	9 (4%)	0	100	100
8	Ε	175/177~(99%)	163 (93%)	12 (7%)	0	100	100
9	F	173/175~(99%)	163 (94%)	10 (6%)	0	100	100
10	G	147/149~(99%)	135 (92%)	12 (8%)	0	100	100
11	J	140/142~(99%)	135 (96%)	5 (4%)	0	100	100
12	K	121/123~(98%)	116 (96%)	5 (4%)	0	100	100
13	L	142/144 (99%)	138 (97%)	4 (3%)	0	100	100
14	М	134/136~(98%)	131 (98%)	3 (2%)	0	100	100
15	Ν	117/119~(98%)	111 (95%)	6 (5%)	0	100	100
16	О	114/116~(98%)	110 (96%)	4 (4%)	0	100	100
17	Р	112/114 (98%)	104 (93%)	8 (7%)	0	100	100
18	Q	115/117 (98%)	112 (97%)	3 (3%)	0	100	100
19	R	101/103~(98%)	90 (89%)	9 (9%)	2 (2%)	6	34
20	S	108/110 (98%)	100 (93%)	8 (7%)	0	100	100
21	Т	92/94~(98%)	89 (97%)	3 (3%)	0	100	100
22	U	101/103~(98%)	97~(96%)	4 (4%)	0	100	100
23	V	92/94~(98%)	87 (95%)	5 (5%)	0	100	100
24	W	74/76~(97%)	71 (96%)	3 (4%)	0	100	100
25	Х	75/77~(97%)	71 (95%)	4 (5%)	0	100	100
26	Y	60/62~(97%)	59 (98%)	1 (2%)	0	100	100
27	Z	56/58~(97%)	54 (96%)	2 (4%)	0	100	100
28	a	64/66~(97%)	60 (94%)	4 (6%)	0	100	100
29	b	54/56~(96%)	52 (96%)	2 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
30	с	50/52~(96%)	50 (100%)	0	0	100	100
31	d	44/46~(96%)	42 (96%)	2(4%)	0	100	100
32	е	62/64~(97%)	56 (90%)	5 (8%)	1 (2%)	8	38
33	f	36/38~(95%)	35~(97%)	1 (3%)	0	100	100
34	g	223/225~(99%)	211 (95%)	12~(5%)	0	100	100
35	h	206/208~(99%)	193 (94%)	13~(6%)	0	100	100
36	i	203/205~(99%)	194 (96%)	9~(4%)	0	100	100
37	j	154/156~(99%)	144 (94%)	10 (6%)	0	100	100
38	k	102/104 (98%)	100 (98%)	2(2%)	0	100	100
39	1	149/151~(99%)	143 (96%)	6 (4%)	0	100	100
40	m	127/129~(98%)	120 (94%)	7~(6%)	0	100	100
41	n	125/127~(98%)	115 (92%)	10 (8%)	0	100	100
42	О	97/99~(98%)	88 (91%)	9~(9%)	0	100	100
43	р	115/117~(98%)	108 (94%)	7 (6%)	0	100	100
44	q	120/123~(98%)	108 (90%)	12 (10%)	0	100	100
45	r	114/116 (98%)	106 (93%)	8 (7%)	0	100	100
46	s	98/100~(98%)	96~(98%)	2(2%)	0	100	100
47	t	86/88~(98%)	82 (95%)	4 (5%)	0	100	100
48	u	80/82~(98%)	76 (95%)	4(5%)	0	100	100
49	V	78/80~(98%)	71 (91%)	7 (9%)	0	100	100
50	W	64/66~(97%)	60 (94%)	4 (6%)	0	100	100
51	х	81/83~(98%)	79~(98%)	2(2%)	0	100	100
52	У	84/86~(98%)	83~(99%)	1 (1%)	0	100	100
53	Z	68/70~(97%)	68 (100%)	0	0	100	100
54	А	257/259~(99%)	236 (92%)	18 (7%)	3 (1%)	11	43
56	6	1/3~(33%)	0	0	1 (100%)	0	0
All	All	$58\overline{66}/5969~(98\%)$	5551 (95%)	306 (5%)	9 (0%)	45	73

Continued from previous page...

5 of 9 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
19	R	53	PHE
54	А	213	GLU
	<i>~</i> .	•	

Continued from previous page...

Mol	Chain	Res	Type
54	А	323	ASN
54	А	324	LEU
19	R	52	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
5	В	216/216~(100%)	213~(99%)	3~(1%)	62	79
6	С	164/164~(100%)	162 (99%)	2(1%)	67	82
7	D	165/165~(100%)	163 (99%)	2 (1%)	67	82
8	Ε	148/148~(100%)	148 (100%)	0	100	100
9	F	136/136~(100%)	134 (98%)	2(2%)	60	78
10	G	114/114~(100%)	111 (97%)	3(3%)	41	65
11	J	116/116~(100%)	116 (100%)	0	100	100
12	Κ	104/104~(100%)	103 (99%)	1 (1%)	73	85
13	L	103/103~(100%)	102 (99%)	1 (1%)	73	85
14	М	109/109~(100%)	108 (99%)	1 (1%)	75	87
15	Ν	99/99~(100%)	98~(99%)	1 (1%)	73	85
16	Ο	86/86~(100%)	84 (98%)	2(2%)	45	68
17	Р	99/99~(100%)	97~(98%)	2(2%)	50	72
18	Q	89/89~(100%)	88 (99%)	1 (1%)	70	83
19	R	84/84~(100%)	83~(99%)	1 (1%)	67	82
20	S	93/93~(100%)	92~(99%)	1 (1%)	70	83
21	Т	81/81~(100%)	80 (99%)	1 (1%)	67	82
22	U	84/84~(100%)	84 (100%)	0	100	100
23	V	$\overline{78/78}\ (100\%)$	77~(99%)	1 (1%)	65	81
24	W	58/58~(100%)	58 (100%)	0	100	100
25	Х	67/67~(100%)	66 (98%)	1 (2%)	60	78

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
26	Y	54/54~(100%)	54 (100%)	0	100	100
27	Ζ	48/48~(100%)	47~(98%)	1 (2%)	48	71
28	a	59/59~(100%)	57~(97%)	2(3%)	32	60
29	b	47/47~(100%)	46~(98%)	1 (2%)	48	71
30	с	47/47~(100%)	46 (98%)	1 (2%)	48	71
31	d	38/38~(100%)	37~(97%)	1 (3%)	41	65
32	е	51/51~(100%)	50~(98%)	1 (2%)	50	72
33	f	34/34~(100%)	34 (100%)	0	100	100
34	g	187/187~(100%)	187 (100%)	0	100	100
35	h	$171/171 \ (100\%)$	168 (98%)	3 (2%)	54	74
36	i	172/172~(100%)	172 (100%)	0	100	100
37	j	119/119~(100%)	117 (98%)	2(2%)	56	75
38	k	91/91~(100%)	91 (100%)	0	100	100
39	1	124/124~(100%)	122 (98%)	2(2%)	58	76
40	m	104/104~(100%)	104 (100%)	0	100	100
41	n	105/105~(100%)	103~(98%)	2(2%)	52	73
42	0	86/86~(100%)	85~(99%)	1 (1%)	67	82
43	р	90/90~(100%)	89~(99%)	1 (1%)	70	83
44	q	102/102~(100%)	100 (98%)	2(2%)	50	72
45	r	94/94~(100%)	94 (100%)	0	100	100
46	s	83/83~(100%)	83 (100%)	0	100	100
47	t	76/76~(100%)	75~(99%)	1 (1%)	65	81
48	u	65/65~(100%)	64 (98%)	1 (2%)	60	78
49	V	74/74~(100%)	73~(99%)	1 (1%)	62	79
50	W	57/57~(100%)	57 (100%)	0	100	100
51	х	72/72~(100%)	70~(97%)	2(3%)	38	64
52	У	65/65~(100%)	65 (100%)	0	100	100
53	Z	60/60~(100%)	60 (100%)	0	100	100
54	А	210/210~(100%)	208~(99%)	2(1%)	73	85
56	6	2/2~(100%)	2(100%)	0	100	100
All	All	4880/4880 (100%)	4827 (99%)	53 (1%)	69	83

5 of 53 residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
28	а	59	ARG
35	h	172	ARG
51	Х	32	ARG
29	b	10	ARG
32	е	31	HIS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 39 such side chains are listed below:

Mol	Chain	\mathbf{Res}	Type
41	n	50	GLN
52	у	52	ASN
43	р	22	HIS
47	t	80	GLN
54	А	218	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	2898/2903~(99%)	596~(20%)	9(0%)
2	2	1529/1534~(99%)	293~(19%)	4(0%)
3	3	119/120~(99%)	23~(19%)	0
4	4	8/9~(88%)	3~(37%)	0
55	5	74/76~(97%)	19~(25%)	2(2%)
All	All	4628/4642~(99%)	934 (20%)	15~(0%)

5 of 934 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	10	А
1	1	15	G
1	1	34	U
1	1	35	G
1	1	46	G

5 of 15 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	2193	G
55	5	8	4SU

Continued from previous page...

Mol	Chain	Res	Type
1	1	2425	А
55	5	17	U
2	2	516	PSU

5.4 Non-standard residues in protein, DNA, RNA chains (i)

40 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Pog	Bond lengths		Bond angles				
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	OMU	1	2552	1,57	19,22,23	2.81	7 (36%)	25,31,34	1.97	5 (20%)
55	H2U	5	20	55	18,21,22	<mark>3.20</mark>	5 (27%)	19,30,33	1.50	4 (21%)
1	6MZ	1	2030	1	17,25,26	1.77	3 (17%)	15,36,39	2.72	4 (26%)
1	1MG	1	745	1	19,26,27	2.67	5 (26%)	18,39,42	1.81	<mark>6 (33%)</mark>
2	PSU	2	516	2	18,21,22	1.41	3 (16%)	21,30,33	2.07	6 (28%)
1	5MU	1	747	1	19,22,23	4.49	7 (36%)	27,32,35	<mark>3.98</mark>	12 (44%)
55	4OC	5	32	55	20,23,24	2.95	8 (40%)	25,32,35	0.92	1 (4%)
1	6MZ	1	1618	1	17,25,26	1.57	3 (17%)	15,36,39	2.46	3 (20%)
1	OMG	1	2251	1,55	19,26,27	2.36	8 (42%)	21,38,41	1.56	4 (19%)
2	MA6	2	1519	2	19,26,27	1.72	2 (10%)	18,38,41	2.83	3 (16%)
56	FME	6	77	56	8,9,10	0.99	0	8,9,11	0.71	0
2	G7M	2	527	2	20,26,27	<mark>3.86</mark>	10 (50%)	16,39,42	1.17	2 (12%)
2	UR3	2	1498	2	19,22,23	2.59	6 (31%)	26,32,35	1.64	3 (11%)
1	3TD	1	1915	1,57	19,22,23	4.31	5 (26%)	23,32,35	2.01	4 (17%)
1	OMC	1	2498	1,57	19,22,23	2.66	7 (36%)	25,31,34	1.16	2 (8%)
2	2MG	2	1207	2	18,26,27	2.60	7 (38%)	16,38,41	1.92	6 (37%)
1	PSU	1	1917	1	18,21,22	1.11	2 (11%)	21,30,33	1.94	4 (19%)
1	2MG	1	1835	1	18,26,27	2.53	7 (38%)	16,38,41	1.95	5 (31%)
1	2MG	1	2445	1	18,26,27	2.44	7 (38%)	16,38,41	2.24	<mark>6 (37%)</mark>
2	5MC	2	967	2	19,22,23	3.80	8 (42%)	26,32,35	0.89	1 (3%)

Mal	Tune	Chain	Dec	Tink	B	ond leng	ond lengths		Bond angles		
MOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
2	4OC	2	1402	2	20,23,24	2.84	8 (40%)	25,32,35	1.18	3 (12%)	
2	5MC	2	1407	2	19,22,23	<mark>3.77</mark>	8 (42%)	26,32,35	1.09	1 (3%)	
55	5MU	5	54	55	19,22,23	4.83	7 (36%)	27,32,35	<mark>3.78</mark>	9 (33%)	
2	2MG	2	1516	2	18,26,27	2.53	7 (38%)	16,38,41	2.02	6 (37%)	
44	0TD	q	89	44	8,9,10	1.70	1 (12%)	6,11,13	2.34	2 (33%)	
55	4SU	5	8	55	18,21,22	<mark>3.71</mark>	7 (38%)	25,30,33	2.29	5 (20%)	
1	PSU	1	1911	1	18,21,22	1.17	2 (11%)	21,30,33	1.93	4 (19%)	
2	2MG	2	966	2	18,26,27	2.58	7 (38%)	16,38,41	1.57	4 (25%)	
1	5MU	1	1939	1	19,22,23	4.65	7 (36%)	27,32,35	<mark>3.92</mark>	9 (33%)	
1	5MC	1	1962	1	19,22,23	<mark>3.66</mark>	8 (42%)	26,32,35	1.16	2 (7%)	
1	PSU	1	2457	1	18,21,22	1.11	3 (16%)	21,30,33	2.58	6 (28%)	
1	PSU	1	2605	1	18,21,22	1.11	2 (11%)	21,30,33	2.06	4 (19%)	
2	MA6	2	1518	2	19,26,27	1.66	2 (10%)	18,38,41	<mark>3.01</mark>	4 (22%)	
1	G7M	1	2069	1	20,26,27	2.21	7 (35%)	16,39,42	1.22	1 (6%)	
1	PSU	1	955	1	18,21,22	1.18	2 (11%)	21,30,33	2.07	4 (19%)	
1	PSU	1	2580	1	18,21,22	1.15	3 (16%)	21,30,33	2.07	4 (19%)	
55	PSU	5	55	55	18,21,22	1.15	1 (5%)	21,30,33	1.90	4 (19%)	
1	PSU	1	2504	1,57	18,21,22	1.16	2 (11%)	21,30,33	2.30	4 (19%)	
1	PSU	1	746	1,57	18,21,22	1.13	3(16%)	21,30,33	2.04	5 (23%)	
1	2MA	1	2503	1,57	18,25,26	3.14	7 (38%)	20,37,40	1.87	3 (15%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	OMU	1	2552	1,57	-	0/9/27/28	0/2/2/2
55	H2U	5	20	55	-	4/7/38/39	0/2/2/2
1	6MZ	1	2030	1	-	2/5/27/28	0/3/3/3
1	1MG	1	745	1	-	0/3/25/26	0/3/3/3
2	PSU	2	516	2	-	3/7/25/26	0/2/2/2
1	5MU	1	747	1	-	1/7/25/26	0/2/2/2
55	4OC	5	32	55	-	0/9/29/30	0/2/2/2
1	6MZ	1	1618	1	-	2/5/27/28	0/3/3/3
1	OMG	1	2251	1,55	-	0/5/27/28	0/3/3/3
2	MA6	2	1519	2	-	4/7/29/30	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
56	FME	6	77	56	-	5/7/9/11	-
2	G7M	2	527	2	-	3/3/25/26	0/3/3/3
2	UR3	2	1498	2	-	0/7/25/26	0/2/2/2
1	3TD	1	1915	1,57	-	2/7/25/26	0/2/2/2
1	OMC	1	2498	1,57	-	1/9/27/28	0/2/2/2
2	2MG	2	1207	2	-	0/5/27/28	0/3/3/3
1	PSU	1	1917	1	-	0/7/25/26	0/2/2/2
1	2MG	1	1835	1	-	2/5/27/28	0/3/3/3
1	2MG	1	2445	1	-	2/5/27/28	0/3/3/3
2	5MC	2	967	2	-	0/7/25/26	0/2/2/2
2	4OC	2	1402	2	-	2/9/29/30	0/2/2/2
2	5MC	2	1407	2	-	0/7/25/26	0/2/2/2
55	5MU	5	54	55	-	0/7/25/26	0/2/2/2
2	2MG	2	1516	2	-	0/5/27/28	0/3/3/3
44	0TD	q	89	44	-	1/7/12/14	-
55	4SU	5	8	55	-	2/7/25/26	0/2/2/2
1	PSU	1	1911	1	-	0/7/25/26	0/2/2/2
2	2MG	2	966	2	-	2/5/27/28	0/3/3/3
1	5MU	1	1939	1	_	0/7/25/26	0/2/2/2
1	5MC	1	1962	1	-	0/7/25/26	0/2/2/2
1	PSU	1	2457	1	-	0/7/25/26	0/2/2/2
1	PSU	1	2605	1	-	0/7/25/26	0/2/2/2
2	MA6	2	1518	2	-	0/7/29/30	0/3/3/3
1	G7M	1	2069	1	-	1/3/25/26	0/3/3/3
1	PSU	1	955	1	-	0/7/25/26	0/2/2/2
1	PSU	1	2580	1	-	0/7/25/26	0/2/2/2
55	PSU	5	55	55	-	0/7/25/26	0/2/2/2
1	PSU	1	2504	1,57	-	1/7/25/26	0/2/2/2
1	PSU	1	746	1,57	-	3/7/25/26	0/2/2/2
1	2MA	1	2503	1,57	-	0/3/25/26	0/3/3/3

Continued from previous page...

The worst 5 of 204 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	1	1915	3TD	C6-C5	13.58	1.50	1.35
55	5	54	5MU	C2-N1	11.43	1.56	1.38
55	5	54	5MU	C6-N1	10.41	1.55	1.38
55	5	20	H2U	C2-N1	10.05	1.49	1.35
1	1	1939	5MU	C6-N1	10.02	1.55	1.38

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	1939	5MU	C5-C4-N3	12.70	126.36	115.32
55	5	54	5MU	C5-C4-N3	12.60	126.27	115.32
1	1	747	5MU	C5-C4-N3	11.08	124.96	115.32
1	1	747	5MU	C5-C6-N1	-10.42	111.99	123.31
1	1	1939	5MU	C5-C6-N1	-10.38	112.03	123.31

The worst 5 of 165 bond angle outliers are listed below:

There are no chirality outliers.

5 of 43 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	1	746	PSU	C2'-C1'-C5-C4
1	1	1618	6MZ	C5-C6-N6-C9
1	1	1618	6MZ	N1-C6-N6-C9
1	1	1915	3TD	O4'-C1'-C5-C4
1	1	1915	3TD	O4'-C1'-C5-C6

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 309 ligands modelled in this entry, 309 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-20184. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 128

Y Index: 128

Z Index: 128

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 148

Y Index: 126

Z Index: 130

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.06. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 945 $\rm nm^3;$ this corresponds to an approximate mass of 854 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.278 $\mathrm{\AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-20184 and PDB model 6OSK. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.06 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.06).

9.4 Atom inclusion (i)

At the recommended contour level, 84% of all backbone atoms, 77% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.06) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score		
All	0.7710	0.4670		
1	0.8550	0.4830		
2	0.8330	0.4470		
3	0.8300	0.4240		
4	0.7770	0.5030		
5	0.6320	0.3710		
6	0.4380	0.4210		
А	0.4730	0.4330		
В	0.7560	0.5360		
\mathbf{C}	0.7670	0.5280		
D	0.7140	0.5080		
Е	0.4600	0.3880		
F	0.5860	0.4280		
G	0.1960	0.3400		
J	0.7750	0.5330		
K	0.6840	0.5190		
L	0.7280	0.5180		
М	0.6900	0.5080		
N	0.8160	0.5370		
0	0.6140	0.4280		
Р	0.6960	0.5160		
Q	0.7900	0.5270		
R	0.7620	0.5270		
S	0.7430	0.5330		
Т	0.6660	0.4940		
U	0.6300	0.4720		
V	0.6060	0.4440		
W	0.7330	0.5200		
X	0.7210	0.5010		
Y	0.6690	0.4600		
Z	0.7500	0.5200		
a	0.0000	0.1790		
b	0.7670	0.5140		
с	0.6700	0.5070		
d	0.7910	0.5390		

Continued from previous page...

Chain	Atom inclusion	Q-score
е	0.7370	0.5360
f	0.7140	0.5170
g	0.5410	0.4240
h	0.5820	0.4570
i	0.4150	0.3750
j	0.6840	0.4930
k	0.6110	0.4380
1	0.4510	0.4100
m	0.6570	0.4760
n	0.5480	0.4110
0	0.4720	0.4160
р	0.6250	0.4500
q	0.6280	0.4920
r	0.5200	0.4180
S	0.6030	0.4560
t	0.6350	0.4650
u	0.6050	0.4620
V	0.5440	0.4340
W	0.5330	0.4300
X	0.5160	0.4090
У	0.5570	0.4350
Z	0.4620	0.3950

