

Jul 6, 2025 – 12:19 AM JST

PDB ID	:	$9\mathrm{JT2} \ / \ \mathrm{pdb} \ 00009\mathrm{jt2}$
EMDB ID	:	EMD-61790
Title	:	substrate-bound NbaSPARDA complexes
Authors	:	Zhuang, L.
Deposited on	:	2024-10-01
Resolution	:	3.19 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	4-5-2 with Phenix2.0rc1
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.44

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.19 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole $\operatorname{archive}(\#\operatorname{Entries})$	${f EM} {f structures} \ (\# {f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	А	485	86%	10% ·
1	Е	485	88%	8% •
1	Ι	485	86%	10% •
1	М	485	84%	12% •
2	В	442	74%	18% • 7%
2	F	442	78%	14% 7%
2	J	442	73%	14% • 12%
2	Ν	442	66% 2	21% • 12%

Mol	Chain	Length	Quality of	chain	
3	С	20	50%	40%	5% 5%
3	G	20	40%	55%	5%
3	Κ	20	40%	50%	10%
3	О	20	30% 50	9%	15% 5%
4	D	21	81%		5% 14%
4	Н	21	62%	29%	10%
4	L	21	62%	24%	14%
4	Р	21	81%		5% 14%
5	Q	8	75%		25%
5	R	8	100%		

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 31178 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	1 A	468	Total	С	Ν	0	S	0	0
	400	3715	2356	655	690	14	0	0	
1 F	169	Total	С	Ν	0	S	0	0	
1	Ľ	400	3715	2356	655	690	14	0	0
1	т	465	Total	С	Ν	0	S	0	0
	405	3696	2344	651	687	14	0	0	
1 M	465	Total	С	Ν	0	S	0	0	
		3696	2344	651	687	14		0	

• Molecule 1 is a protein called Ago.

• Molecule 2 is a protein called DREN-APAZ.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	2 B	410	Total	С	Ν	0	S	0	0
	410	3304	2106	575	614	9	0	0	
9	2 F	409	Total	С	Ν	0	S	0	0
	T,		3297	2101	574	613	9		0
0	т	389	Total	С	Ν	0	S	0	0
	1		3149	2001	551	588	9	0	0
2 N	N	200	Total	С	Ν	0	S	0	0
	389	3149	2001	551	588	9	0	U	

• Molecule 3 is a RNA chain called RNA (5'-R(P*AP*UP*AP*CP*UP*GP*CP*AP*CP*AP *GP*CP*AP*CP*AP*CP*A)-3').

Mol	Chain	Residues	Atoms					AltConf	Trace
3 C	19	Total	С	Ν	0	Р	0	0	
		405	181	73	132	19	0	0	
3 C	20	Total	С	Ν	0	Р	0	0	
0	G	20	427	191	78	138	20	0	0
2	K	10	Total	С	Ν	0	Р	0	0
3 K	18	385	172	71	124	18	0		
3 O	0	10	Total	С	Ν	0	Р	0	0
	19	405	181	73	132	19	0	0	

• Molecule 4 is a DNA chain called DNA (5'-D(*TP*AP*TP*CP*GP*TP*CP*AP*GP*CP* TP*GP*TP*GP*CP*AP*GP*TP*AP*TP*T)-3').

Mol	Chain	Residues	Atoms				AltConf	Trace	
4 D	18	Total	С	Ν	Ο	Р	0	0	
	10	370	176	67	109	18	0	0	
4	н	10	Total	С	Ν	0	Р	0	0
4	11	19	391	186	69	117	19	0	0
4	т	18	Total	С	Ν	0	Р	0	0
4 L	18	370	176	67	109	18	0	0	
4 P	19	Total	С	Ν	0	Р	0	0	
	18	370	176	67	109	18		0	

• Molecule 5 is a DNA chain called DNA (5'-D(P*GP*AP*TP*AP*CP*TP*AP*C)-3').

Mol	Chain	Residues		\mathbf{At}	\mathbf{oms}			AltConf	Trace
5	5 0	0	Total	С	Ν	Ο	Р	0	0
D Q	0	164	78	30	48	8	0	0	
5 R	> &	Total	С	Ν	Ο	Р	0	0	
	8	164	78	30	48	8	0	0	

• Molecule 6 is MAGNESIUM ION (CCD ID: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
6	В	1	Total Mg 1 1	0
6	С	1	Total Mg 1 1	0
6	Е	1	Total Mg 1 1	0
6	F	1	Total Mg 1 1	0
6	Ι	1	Total Mg 1 1	0
6	М	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Ago

Q452 D207 Q453 P212 R454 2213 P455 2213 P456 2223 P457 2223 Q405 2242 Q410 234 Q434 234 Q434 234 Q344 234 Q344 234 Q344 234 Q344 234 Q344 234 Q344 234 Q344

• Molecule 2: DREN-APAZ

• Molecule 2: DREN-APAZ

Chain N	:	66%	21% · 12%	
MET THR LYS LYS ILE THR	A7 E13 C20 C20 C20 C20 C20 C22 C32 C32 C32 C32 C32 C32 C32 C42 C42 C42 C42 C42 C42 C42 C42 C42 C4	E45 R67 779 873 873 873 879 879 8102 8102 8102 8102 8123 8123	1132 F133 F133 F133 F133 F133 F133 F133	PRU
PRO LEU GLY GLA E161 E162	11 66 N167 N167 1169 1172 1173 1173 1173 A180 A180 A180	P186 R188 K188 L194 L194 V205 V206 V206 V206 V206 V206 V206 V206 V205 V206 V205 V205 V205 V205 V205 V205 V205 V205	1227 1228 1228 1228 1238 1238 1238 1238 1238	R279
A280 I281 E282 V285 S286	R287 R287 F288 F289 F289 F289 F289 F298 K296 K296 K296 K296 K298 F298 C298 C298 C298 C298 C298 C298 C298 C	A300 N300 S300 K310 K310 T313 T313 R3119 R319 R319 R319 R319 R319 R320 R322 R322 R322 R323 R322 R323 R322 R324 R322 R324 R322 R324 R322 R326 R326 R326 R326 R326 R326 R326	Y 349 Y 349 H 352 A 356 A 376 A 376	LEU
PHE HIS SER GLU GLU THR	PR0 6LU 7400 F401 F403 F403 F405 F405 F405 F405 F411 L411 L411 L411	K424 VAL LYS LYS ARG ASP GLU GLU CLU CLU CLU CLU CLU SSR SSR ASP ASP	ILE	
• Molec	ule 3: RNA (5'-R(P	*AP*UP*AP*CP*UP*G	P*CP*AP*CP*AP*GP*CP)*

• Molecule 3: RNA (5'-R(P*AP*UP*AP*CP*UP*GP*CP*AP*CP*AP*GP*CP*UP*GP*AP*C P*GP*AP*UP*A)-3')

Chain C:	50%	40%	5%	5%
A1 12 02 04 05 01 13 013 013 013 013 013 013 013 013 0				
• Molecule 3. BNA (5	'-R(P*AP*UP*AP*	CP*UP*GP*CP*AP*CP*	٩A [×]	י∗G

• Molecule 3: RNA (5'-R(P*AP*UP*AP*CP*UP*GP*CP*AP*CP*AP*GP*CP*UP*GP*AP*C P*GP*AP*UP*A)-3')

Chain G:	40%	55%	5%	
A1 C4 U5 C7 C7 C7 A10 C11 C11	C12 U13 C15 C16 C16 C16 C16 C16 C16 C16 C16 C16 C17 C17 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12			
• Molecule 3: P*GP*AP*U	RNA (5'-R(P*AP*U P*A)-3')	P*AP*CP*UP*GP*CP*AP*CP	*AP*GP*CP*UP*(GP*AP*C

Chain K:	40%	50%	10%
A1 U2 C4 C5 C7 C7 C7 C7	d 10 14 18 18 18 14 18		

• Molecule 3: RNA (5'-R(P*AP*UP*AP*CP*UP*GP*CP*AP*CP*AP*GP*CP*UP*GP*AP*C P*GP*AP*UP*A)-3')

Chain O:	30%	50%	15%	5%
<mark>41</mark> U2 U5 C7 C7 A8	U13 C14 A15 C16 C16 C16 A18 A18 V19 V19			

• Molecule 4: DNA (5'-D(*TP*AP*TP*CP*GP*TP*CP*AP*GP*CP*TP*GP*TP*GP*CP*AP *GP*TP*AP*TP*T)-3')

Chain D:	81%	5%	14%

• Molecule 4: DNA (5'-D(*TP*AP*TP*CP*GP*TP*CP*AP*GP*CP*TP*GP*TP*GP*CP*AP *GP*TP*AP*TP*T)-3')

Chain H.	620/	20%	1.00/
Unam II.	62%	29%	10%

• Molecule 4: DNA (5'-D(*TP*AP*TP*CP*GP*TP*CP*AP*GP*CP*TP*GP*TP*GP*CP*AP *GP*TP*AP*TP*T)-3')

Chain L:	62%	24%	14%
DT 42 13 13 13 118 118 118 118 118 118 118 11			

• Molecule 4: DNA (5'-D(*TP*AP*TP*CP*GP*TP*CP*AP*GP*CP*TP*GP*TP*GP*CP*AP *GP*TP*AP*TP*T)-3')

Chain P:	81%	5%	14%
DT A2 A19 DT DT			
• Molecule	e 5: DNA (5'-D(P*GP*AP*TP*AP*CP*TP*AP	*C)-3')	
Chain Q:	75%	25	%
61 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17			
• Molecule	e 5: DNA (5'-D(P*GP*AP*TP*AP*CP*TP*AP	*C)-3')	
Chain R:	100%		

There are no outlier residues recorded for this chain.

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	148359	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TALOS ARCTICA	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	54	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	2200	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond	angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.15	0/3800	0.38	0/5131
1	Е	0.14	0/3800	0.35	0/5131
1	Ι	0.14	0/3781	0.36	0/5105
1	М	0.14	0/3781	0.35	0/5105
2	В	0.16	0/3386	0.41	0/4588
2	F	0.18	0/3378	0.48	0/4577
2	J	0.18	0/3224	0.47	0/4365
2	Ν	0.19	0/3224	0.50	0/4365
3	С	0.15	0/452	0.33	0/700
3	G	0.11	0/477	0.25	0/739
3	Κ	0.12	0/430	0.30	0/666
3	0	0.15	0/452	0.37	0/700
4	D	0.22	0/414	0.45	0/637
4	Н	0.18	0/437	0.42	0/671
4	L	0.21	0/414	0.41	0/637
4	Р	0.20	0/414	0.41	0/637
5	Q	0.20	0/183	0.48	0/278
5	R	0.20	0/183	0.45	0/278
All	All	0.16	0/32230	0.41	0/44310

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3715	0	3695	30	0
1	Е	3715	0	3695	25	0
1	Ι	3696	0	3673	31	0
1	М	3696	0	3673	39	0
2	В	3304	0	3243	59	0
2	F	3297	0	3235	44	0
2	J	3149	0	3073	45	0
2	Ν	3149	0	3073	74	0
3	С	405	0	206	6	0
3	G	427	0	217	6	0
3	K	385	0	196	6	0
3	0	405	0	206	9	0
4	D	370	0	204	1	0
4	Н	391	0	216	5	0
4	L	370	0	204	8	0
4	Р	370	0	204	1	0
5	Q	164	0	91	2	0
5	R	164	0	91	0	0
6	В	1	0	0	0	0
6	С	1	0	0	0	0
6	Ε	1	0	0	0	0
6	F	1	0	0	0	0
6	Ι	1	0	0	0	0
6	М	1	0	0	0	0
All	All	31178	0	29195	362	0

atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (362) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
2:N:308:ASN:HB3	2:N:314:ARG:HG2	1.47	0.94
3:C:13:U:H2'	3:C:14:G:H8	1.38	0.89
2:N:79:TYR:O	2:N:123:ARG:HA	1.75	0.86
3:C:13:U:H2'	3:C:14:G:C8	2.11	0.85
2:N:161:GLY:HA3	2:N:411:LEU:O	1.79	0.82
2:B:280:ALA:HA	2:B:287:ARG:HE	1.45	0.80
1:M:291:LEU:HD21	1:M:456:ILE:HD11	1.67	0.76

	oue page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:M:456:ILE:HG23	1:M:457:PRO:HD3	1.68	0.76	
1:M:455:PRO:HB2	1:M:457:PRO:HD2	1.73	0.70	
2:F:166:ILE:HG23	2:F:168:MET:H	1.58	0.68	
2:N:307:LYS:HE2	2:N:309:SER:HA	1.76	0.66	
1:M:280:GLN:HG2	1:M:319:VAL:HG22	1.78	0.65	
2:N:308:ASN:CB	2:N:314:ARG:HG2	2.25	0.64	
2:N:180:ALA:HB3	2:N:211:PHE:HB3	1.78	0.63	
2:J:187:ARG:HH21	3:K:17:G:H21	1.46	0.63	
2:J:221:ALA:O	2:J:225:ILE:N	2.32	0.63	
2:N:29:GLN:HB2	2:N:45:GLU:HB3	1.80	0.62	
2:N:169:LEU:HD12	2:N:403:PHE:HB3	1.80	0.62	
1:I:47:VAL:HG22	1:I:102:ALA:HB3	1.81	0.62	
2:F:201:ARG:NH2	2:F:220:SER:OG	2.33	0.62	
2:J:293:SER:HB3	2:J:296:LYS:HB2	1.82	0.60	
2:F:249:ASN:HB2	4:H:7:DC:H4'	1.82	0.60	
2:B:280:ALA:HB2	2:B:287:ARG:HG2	1.83	0.60	
2:B:36:LEU:HD13	2:N:29:GLN:HG2	1.83	0.60	
1:E:156:GLU:HA	1:E:160:ASN:HB2	1.84	0.60	
2:B:31:ASP:O	2:B:42:GLY:HA3	2.02	0.59	
2:B:33:ARG:NH2	2:N:45:GLU:OE1	2.35	0.59	
1:E:374:ARG:NH2	1:E:416:ASN:OD1	2.36	0.59	
2:F:162:GLU:HG2	2:F:414:ARG:HG3	1.84	0.59	
2:J:235:ASN:CG	2:J:237:LYS:H	2.10	0.59	
1:A:130:ILE:HG13	1:A:189:LYS:HB3	1.85	0.59	
1:E:280:GLN:HG2	1:E:319:VAL:HG22	1.85	0.59	
2:F:185:GLU:H	2:F:206:ILE:HG21	1.67	0.59	
2:B:292:THR:O	2:B:380:ARG:NH1	2.34	0.59	
2:N:90:ARG:HH21	2:N:120:GLY:HA2	1.67	0.59	
2:B:91:GLY:O	2:N:55:ARG:NH1	2.36	0.59	
2:F:179:ILE:HG23	2:F:232:GLU:HB2	1.86	0.58	
1:I:368:GLN:HE21	1:I:419:LEU:HD23	1.69	0.58	
2:J:55:ARG:HD3	2:J:145:THR:HB	1.86	0.58	
4:L:17:DG:H2"	4:L:18:DT:C6	2.38	0.58	
1:M:377:ARG:NH1	2:N:417:GLU:OE2	2.35	0.57	
2:F:267:LEU:HB3	2:F:276:LEU:HB3	1.86	0.57	
1:M:338:LYS:NZ	1:M:346:GLU:OE2	2.37	0.57	
2:B:203:ASP:OD1	2:B:203:ASP:N	2.38	0.57	
2:F:73:SER:O	2:F:128:LYS:NZ	2.37	0.57	
2:N:319:ARG:HH21	2:N:342:TYR:HB3	1.69	0.57	
1:A:333:ARG:NH2	1:A:436:GLU:OE1	2.37	0.57	
2:N:307:LYS:HE3	2:N:312:GLU:HA	1.87	0.57	

Interatomic Clash					
Atom-1	Atom-2	distance $(Å)$	overlap (Å)		
1:A:221:ARG:NH2	3:C:2:U:OP1	2.39	0.56		
1:E:267:ARG:NH1	1:E:271:GLY:O	2.38	0.56		
1:E:333:ARG:HB3	1:E:361:LEU:HB2	1.87	0.56		
2:F:224:GLU:CD	2:F:224:GLU:H	2.12	0.56		
1:I:65:SER:OG	1:I:66:GLY:N	2.39	0.56		
2:J:44:ALA:O	2:J:56:MET:HA	2.06	0.56		
2:B:276:LEU:H	2:B:322:ALA:HB1	1.70	0.56		
2:B:311:ASP:OD2	2:B:311:ASP:N	2.37	0.55		
4:H:4:DC:N4	4:H:5:DG:O6	2.39	0.55		
1:A:117:ASP:O	1:A:157:ARG:NH2	2.39	0.55		
2:N:278:PHE:HE2	2:N:287:ARG:HG2	1.70	0.55		
2:F:191:ALA:O	2:F:195:ASN:ND2	2.39	0.55		
2:N:320:HIS:HB2	2:N:343:TYR:O	2.06	0.55		
1:M:74:HIS:O	1:M:74:HIS:ND1	2.34	0.55		
2:N:289:PHE:H	2:N:300:ALA:HB3	1.72	0.55		
1:I:367:VAL:HG12	1:I:420:LEU:HD23	1.89	0.55		
2:B:185:GLU:HG2	2:B:225:ILE:HD12	1.89	0.55		
2:N:73:SER:OG	2:N:74:ASP:N	2.39	0.55		
1:M:207:ASP:OD1	1:M:207:ASP:N	2.38	0.55		
2:B:270:ASP:OD1	2:B:270:ASP:N	2.38	0.54		
2:N:55:ARG:HB3	2:N:145:THR:HG21	1.89	0.54		
2:N:375:VAL:O	2:N:379:HIS:ND1	2.40	0.54		
2:B:281:ILE:HG13	2:B:283:ARG:H	1.71	0.54		
2:F:105:ASP:OD1	2:F:105:ASP:N	2.40	0.54		
2:N:31:ASP:O	2:N:42:GLY:HA2	2.07	0.54		
2:N:280:ALA:HB2	2:N:287:ARG:HB2	1.90	0.54		
2:J:183:THR:HG23	2:J:185:GLU:H	1.72	0.54		
1:E:10:GLU:OE2	1:E:385:ARG:NH1	2.39	0.54		
2:F:180:ALA:H	2:F:210:THR:HG23	1.72	0.54		
2:N:178:TYR:HA	2:N:233:ALA:HA	1.90	0.54		
2:N:290:ALA:HA	2:N:298:THR:HB	1.90	0.54		
2:J:279:ARG:O	2:J:287:ARG:NH2	2.39	0.54		
2:N:344:TYR:HD1	2:N:353:GLN:HE21	1.55	0.54		
2:B:160:GLY:HA2	2:B:414:ARG:HB2	1.89	0.54		
2:F:181:SER:OG	2:F:182:THR:N	2.41	0.54		
1:I:204:VAL:HG13	1:I:229:ARG:HD2	1.90	0.53		
2:N:204:TRP:HZ2	2:N:207:ASN:HB2	1.72	0.53		
2:J:319:ARG:NH1	2:J:344:TYR:OH	2.36	0.53		
2:F:284:GLU:OE2	2:F:287:ARG:NH1	2.41	0.53		
1:M:47:VAL:HG22	1:M:102:ALA:HB3	1.89	0.53		
2:N:169:LEU:HD21	2:N:379:HIS:CD2	2.43	0.53		

Interatomic Clash					
Atom-1	Atom-2	distance (Å)	overlap (Å)		
2:B:223:SER:HA	2:B:226:VAL:HB	1.90	0.53		
2:J:90:ARG:NH1	2:J:114:SER:O	2.42	0.53		
1:E:183:ARG:NH1	3:G:1:A:OP3	2.41	0.53		
1:A:85:GLY:N	1:A:88:SER:OG	2.42	0.53		
2:J:180:ALA:HB3	2:J:233:ALA:HB2	1.90	0.52		
2:B:263:THR:O	2:B:267:LEU:N	2.41	0.52		
1:E:281:MET:HA	1:E:290:VAL:O	2.10	0.52		
2:F:68:LYS:NZ	2:F:69:TYR:O	2.43	0.52		
2:F:235:ASN:OD1	2:F:235:ASN:N	2.43	0.52		
2:J:283:ARG:HG3	2:J:285:VAL:HG22	1.92	0.52		
2:B:256:ARG:HG2	2:B:269:TRP:HH2	1.75	0.51		
1:I:183:ARG:NH1	3:K:1:A:OP1	2.43	0.51		
1:I:186:LEU:HD23	1:I:199:ILE:HD11	1.93	0.51		
2:N:307:LYS:HB2	2:N:314:ARG:HB3	1.92	0.51		
2:B:308:ASN:HD22	2:B:314:ARG:HB2	1.76	0.51		
1:M:333:ARG:NH2	1:M:436:GLU:OE1	2.43	0.51		
1:I:313:LYS:HG3	1:I:353:ALA:HB2	1.92	0.51		
1:I:198:GLN:OE1	1:I:240:LYS:NZ	2.44	0.51		
4:L:19:DA:H2'	4:L:19:DA:N3	2.24	0.51		
2:F:33:ARG:NH1	2:J:31:ASP:OD2	2.44	0.51		
1:I:281:MET:HE2	1:I:291:LEU:HD13	1.93	0.51		
1:I:307:MET:HB2	1:I:346:GLU:HG2	1.92	0.51		
2:N:291:TYR:HD1	2:N:293:SER:H	1.59	0.51		
1:A:156:GLU:OE1	1:A:160:ASN:ND2	2.43	0.50		
1:E:408:THR:OG1	1:E:409:TYR:N	2.43	0.50		
1:I:408:THR:OG1	1:I:409:TYR:N	2.44	0.50		
2:B:90:ARG:NE	2:B:115:ARG:O	2.44	0.50		
1:E:333:ARG:NH2	1:E:363:ASP:OD2	2.44	0.50		
1:M:410:PRO:HA	4:P:19:DA:H5'	1.93	0.50		
2:N:185:GLU:OE2	2:N:188:LYS:HB2	2.11	0.50		
1:E:82:PRO:HG2	1:E:89:PRO:HD3	1.93	0.50		
2:N:222:CYS:SG	2:N:227:ASP:N	2.84	0.50		
1:E:148:ILE:HD11	1:E:197:ILE:HB	1.94	0.50		
2:J:35:ARG:NH1	2:N:37:GLU:OE1	2.45	0.50		
1:E:202:GLU:HG2	1:E:209:VAL:HG11	1.94	0.49		
2:F:183:THR:HG21	2:F:226:VAL:HB	1.94	0.49		
1:M:157:ARG:O	1:M:157:ARG:NH1	2.44	0.49		
2:B:289:PHE:H	2:B:301:ASN:HD21	1.59	0.49		
1:I:403:MET:HE1	1:I:451:ASN:HB3	1.93	0.49		
2:B:280:ALA:HA	2:B:287:ARG:NE	2.21	0.49		
2:B:287:ARG:HD2	2:B:289:PHE:HE2	1.77	0.49		

Atom-1	Atom-2	Interatomic	Clash	
		distance (A)	overlap (A)	
2:F:71:SER:O	2:F:76:SER:OG	2.31	0.49	
2:N:167:ASN:OD1	2:N:167:ASN:N	2.42	0.49	
2:N:376:ILE:HA	2:N:379:HIS:CE1	2.48	0.49	
1:I:377:ARG:NH1	1:I:381:TYR:O	2.45	0.49	
3:O:13:U:H2'	3:O:14:G:C8	2.48	0.49	
2:B:66:GLU:HB3	2:B:104:SER:HB3	1.94	0.48	
1:I:184:GLY:HA2	1:I:467:VAL:HG23	1.94	0.48	
4:L:17:DG:H2"	4:L:18:DT:H6	1.78	0.48	
4:L:18:DT:H3'	4:L:19:DA:C8	2.48	0.48	
1:M:463:LYS:HD3	1:M:485:ILE:HG22	1.96	0.48	
2:B:277:TYR:HB2	2:B:320:HIS:HB2	1.96	0.48	
2:F:201:ARG:NH2	2:F:222:CYS:SG	2.83	0.48	
2:F:401:LEU:HD22	2:F:403:PHE:HE1	1.78	0.48	
2:N:194:LEU:HD23	2:N:200:LYS:HZ1	1.79	0.48	
1:A:262:GLY:O	1:A:278:ALA:HA	2.13	0.48	
2:F:283:ARG:H	2:F:283:ARG:HD3	1.79	0.48	
1:I:248:ARG:NH1	1:I:283:ASP:OD1	2.45	0.48	
2:N:41:ASP:OD1	2:N:41:ASP:N	2.46	0.48	
1:M:120:ARG:O	1:M:124:MET:HG3	2.13	0.48	
2:N:279:ARG:NH2	2:N:349:TYR:OH	2.45	0.48	
2:B:36:LEU:H	2:B:36:LEU:HG	1.53	0.48	
1:I:244:ARG:NH1	1:M:140:GLY:O	2.47	0.48	
2:N:345:THR:HA	2:N:353:GLN:NE2	2.28	0.48	
2:B:81:LEU:O	2:B:122:ARG:NH1	2.40	0.48	
3:C:9:C:H2'	3:C:10:A:H8	1.79	0.47	
2:F:249:ASN:HD22	4:H:7:DC:H1'	1.79	0.47	
2:J:361:GLY:O	2:J:365:LEU:HG	2.14	0.47	
2:B:256:ARG:HH12	4:D:6:DT:H5"	1.78	0.47	
1:I:113:GLY:HA2	1:I:157:ARG:HG2	1.95	0.47	
1:M:238:TYR:O	1:M:242:SER:HB3	2.14	0.47	
2:N:173:LEU:HB2	2:N:237:LYS:HG2	1.96	0.47	
1:M:44:ILE:HB	1:M:96:ILE:HD13	1.95	0.47	
3:O:14:G:H2'	3:O:15:A:C8	2.49	0.47	
1:M:309:ARG:NH1	1:M:348:ASP:OD2	2.44	0.47	
1:E:70:LYS:HE3	4:H:19:DA:H61	1.80	0.47	
1:I:410:PRO:HA	4:L:19:DA:P	2.54	0.47	
1:I:413:TYR:HD1	1:I:414:ASP:HB2	1.80	0.47	
2:J:278:PHE:O	2:J:320:HIS:ND1	2.41	0.47	
1:M:454:LEU:HD13	1:M:455:PRO·HD2	1.96	0.47	
1:A:409:TYR:OH	1:A:413:TYR·O	2.29	0.47	
2:B:78:THR:HG21	2:B:123:ARG:HH21	1.80	0.47	

	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
3:C:9:C:H2'	3:C:10:A:C8	2.49	0.47	
2:J:309:SER:O	2:J:309:SER:OG	2.24	0.47	
1:M:334:VAL:HG23	1:M:359:THR:HG21	1.97	0.47	
2:J:71:SER:O	2:J:71:SER:OG	2.32	0.47	
1:M:456:ILE:O	1:M:457:PRO:C	2.57	0.47	
2:N:267:LEU:HD23	2:N:278:PHE:HB3	1.97	0.47	
2:B:178:TYR:HD1	2:B:231:VAL:HG13	1.80	0.46	
2:F:236:THR:OG1	2:F:237:LYS:NZ	2.48	0.46	
2:J:286:SER:OG	2:J:288:ASN:OD1	2.32	0.46	
1:A:299:GLU:HG3	1:A:300:SER:H	1.80	0.46	
2:F:148:LYS:HD2	2:F:148:LYS:HA	1.75	0.46	
2:J:105:ASP:OD1	2:J:105:ASP:N	2.46	0.46	
1:M:84:LEU:HA	1:M:88:SER:HB3	1.97	0.46	
1:E:26:LEU:O	1:E:30:GLU:HB2	2.14	0.46	
1:M:264:SER:H	1:M:277:SER:HB3	1.81	0.46	
3:O:4:C:H2'	3:O:5:U:C6	2.50	0.46	
2:N:266:ASP:OD1	2:N:266:ASP:N	2.49	0.46	
2:N:318:VAL:HB	2:N:345:THR:HG23	1.97	0.46	
1:A:261:VAL:HB	1:A:336:ILE:HD13	1.98	0.46	
1:I:359:THR:O	1:I:362:ARG:NH2	2.48	0.46	
2:B:182:THR:OG1	2:B:185:GLU:OE1	2.34	0.46	
2:J:174:PRO:O	2:J:237:LYS:HG3	2.15	0.46	
2:N:280:ALA:HA	2:N:287:ARG:HD3	1.98	0.46	
2:B:45:GLU:OE1	2:N:33:ARG:NH2	2.47	0.46	
1:A:280:GLN:HG2	1:A:319:VAL:HG22	1.97	0.46	
2:B:58:ALA:HB3	2:B:96:VAL:HG12	1.97	0.46	
1:E:216:LYS:HB2	1:E:216:LYS:HE3	1.67	0.46	
2:B:279:ARG:HE	2:B:280:ALA:H	1.63	0.45	
1:I:376:LEU:HD13	2:J:372:ARG:HA	1.98	0.45	
2:J:177:MET:HE3	2:J:235:ASN:OD1	2.16	0.45	
3:K:9:C:H2'	3:K:10:A:C8	2.50	0.45	
2:N:217:PRO:HD2	2:N:218:ARG:NH1	2.31	0.45	
2:B:175:ASN:OD1	2:B:235:ASN:ND2	2.49	0.45	
2:B:176:GLU:OE1	2:B:215:HIS:ND1	2.48	0.45	
2:B:326:ARG:HA	2:B:326:ARG:HD2	1.75	0.45	
1:A:355:ASP:OD1	1:A:362:ARG:NH2	2.49	0.45	
2:J:218:ARG:H	2:J:218:ARG:HG2	1.64	0.45	
2:B:37:GLU:HA	2:N:29:GLN:HE22	1.82	0.45	
2:J:422:LYS:HD3	2:J:422:LYS:HA	1.75	0.45	
1:A:377:ARG:NH1	1:A:381:TYR:O	2.45	0.45	
2:J:306:PHE:HE2	2:J:319:ARG:HE	1.62	0.45	

Interatomic Clash					
Atom-1	Atom-2	distance $(Å)$	overlap (Å)		
1:E:13:LEU:HB2	1:E:15:PHE:CE1	2.51	0.45		
2:F:367:LYS:H	2:F:367:LYS:HG2	1.48	0.45		
1:I:413:TYR:HE2	2:J:363:LYS:HD2	1.81	0.45		
2:J:203:ASP:HA	2:J:211:PHE:HE2	1.82	0.45		
2:J:235:ASN:OD1	2:J:237:LYS:HD2	2.17	0.45		
2:N:67:GLY:O	2:N:102:ARG:NH1	2.50	0.45		
2:N:188:LYS:HB3	2:N:188:LYS:HE2	1.62	0.45		
2:N:368:SER:O	2:N:370:ALA:N	2.50	0.45		
3:O:3:A:H2'	3:O:4:C:C6	2.52	0.45		
2:B:338:ILE:HD11	2:B:375:VAL:HG13	1.99	0.45		
1:E:354:LEU:HD13	1:E:362:ARG:HG2	1.99	0.45		
1:I:280:GLN:HE21	1:I:292:LYS:HD3	1.81	0.45		
1:M:377:ARG:NH2	2:N:162:GLU:OE1	2.42	0.44		
2:N:186:PRO:O	2:N:187:ARG:HB2	2.16	0.44		
2:F:227:ASP:N	2:F:227:ASP:OD2	2.47	0.44		
2:F:19:VAL:HG11	2:F:61:ILE:HG12	1.99	0.44		
2:N:352:HIS:N	2:N:353:GLN:OE1	2.50	0.44		
1:I:108:LYS:O	1:I:112:ILE:HG12	2.17	0.44		
4:L:18:DT:H5'	4:L:19:DA:C4	2.53	0.44		
2:J:206:ILE:HG12	2:J:250:ARG:HG2	1.99	0.44		
2:N:402:MET:SD	2:N:402:MET:N	2.90	0.44		
2:B:172:THR:OG1	2:B:402:MET:O	2.34	0.44		
3:C:4:C:H2'	3:C:5:U:C6	2.53	0.44		
1:A:106:LYS:HE2	1:A:106:LYS:HB2	1.83	0.44		
2:B:35:ARG:NH2	2:B:36:LEU:HD23	2.33	0.44		
2:B:381:PHE:HD1	2:B:382:LEU:HD22	1.83	0.44		
3:G:7:C:H2'	3:G:8:A:C8	2.53	0.44		
2:N:267:LEU:HD22	2:N:276:LEU:HB3	1.99	0.44		
2:F:267:LEU:HD23	2:F:278:PHE:H	1.82	0.44		
2:N:180:ALA:HA	2:N:231:VAL:HG11	2.00	0.44		
2:N:296:LYS:HE3	2:N:297:LYS:H	1.83	0.44		
3:O:5:U:H2'	3:O:6:G:C8	2.52	0.44		
3:O:18:A:H2'	3:O:19:U:C6	2.53	0.44		
1:A:191:MET:HE1	1:A:478:SER:H	1.83	0.43		
2:F:215:HIS:NE2	2:F:222:CYS:SG	2.89	0.43		
1:M:337:LEU:HB3	1:M:458:ILE:HD11	1.98	0.43		
1:I:285:ARG:H	1:I:326:HIS:HE1	1.66	0.43		
2:J:177:MET:O	2:J:235:ASN:HB3	2.18	0.43		
1:M:266:TYR:CE1	1:M:465:GLY:HA3	2.53	0.43		
2:N:279:ARG:HH12	2:N:281:ILE:C	2.26	0.43		
3:G:16:C:H2'	3:G:17:G:C8	2.54	0.43		

Interatomic Clash					
Atom-1	Atom-2	distance $(Å)$	overlap (Å)		
1:I:343:LYS:HE2	1:I:343:LYS:HB3	1.71	0.43		
1:M:301:ARG:NH2	1:M:311:ASP:OD1	2.52	0.43		
2:N:222:CYS:HB2	2:N:228:ILE:HG22	2.00	0.43		
1:E:153:LYS:HD2	1:E:153:LYS:HA	1.83	0.43		
2:F:307:LYS:HZ2	2:F:315:VAL:HA	1.84	0.43		
1:M:130:ILE:HD13	1:M:130:ILE:HA	1.90	0.43		
2:N:237:LYS:HD2	2:N:237:LYS:HA	1.79	0.43		
2:N:307:LYS:HE3	2:N:312:GLU:CA	2.49	0.43		
1:A:108:LYS:HE2	1:A:108:LYS:HB2	1.85	0.43		
1:M:284:GLU:OE1	1:M:326:HIS:NE2	2.51	0.43		
2:N:206:ILE:HD12	2:N:206:ILE:HA	1.93	0.43		
1:A:220:SER:OG	1:A:221:ARG:N	2.51	0.43		
2:B:13:GLU:OE1	2:J:20:ARG:NH2	2.52	0.43		
1:E:85:GLY:O	1:E:87:GLN:N	2.52	0.43		
2:F:157:PRO:HB3	2:F:416:PRO:HD3	1.99	0.43		
2:J:341:THR:OG1	2:J:342:TYR:N	2.51	0.43		
1:M:44:ILE:HD11	1:M:94:PHE:HD2	1.84	0.43		
1:M:117:ASP:O	1:M:119:TYR:N	2.52	0.43		
1:E:130:ILE:HD13	1:E:130:ILE:HA	1.90	0.43		
2:F:73:SER:OG	2:F:76:SER:OG	2.33	0.43		
3:G:4:C:H2'	3:G:5:U:C6	2.53	0.43		
1:I:204:VAL:O	1:I:229:ARG:NH1	2.52	0.43		
1:I:412:LYS:HA	1:I:412:LYS:HD3	1.77	0.43		
1:M:291:LEU:HD21	1:M:456:ILE:CD1	2.43	0.43		
1:M:373:ALA:HB1	2:N:166:ILE:HD11	2.01	0.43		
2:B:422:LYS:HG3 2:B:423:GLU:HB2		2.00	0.42		
2:J:177:MET:HE3	2:J:177:MET:HB3	1.76	0.42		
1:M:277:SER:OG	1:M:278:ALA:N	2.51	0.42		
2:N:406:PRO:HA	2:N:407:PRO:HD3	1.86	0.42		
2:B:372:ARG:O	2:B:376:ILE:HG22	2.18	0.42		
2:F:172:THR:HB	2:F:402:MET:HB3	2.01	0.42		
3:K:4:C:H2'	3:K:5:U:C6	2.55	0.42		
1:A:58:LYS:N	1:A:58:LYS:HD2	2.33	0.42		
2:B:38:ALA:HB3	2:B:88:TYR:OH	2.19	0.42		
2:F:275:ALA:HB1	2:F:322:ALA:HB1	2.00	0.42		
1:I:196:PRO:HB2	1:I:240:LYS:HD3	2.01	0.42		
3:O:7:C:H2'	3:O:8:A:C8	2.54	0.42		
2:B:5:ILE:HD12	2:B:5:ILE:HA	1.86	0.42		
1:M:441:THR:HG22	1:M:452:GLN:HB2	2.02	0.42		
1:A:423:HIS:O	1:A:424:HIS:ND1	2.53	0.42		
3:G:10:A:H2'	3:G:11:G:C8	2.55	0.42		

Interatomic Clash					
Atom-1	Atom-2	distance (Å)	overlap (Å)		
2:J:165:LEU:HD21	2:J:372:ABG:HE	1.85	0.42		
4:L:4:DC:H2'	4:L:5:DG:H8	1.85	0.42		
1:A:60:ILE:0	1:A:64:SEB:OG	2.31	0.42		
2:J:36:LEU:HD23	2:N:13:GLU:HG3	2.01	0.42		
1:E:303:ARG:NH1	3:G:13:U:OP1	2.52	0.42		
2:J:188:LYS:HB3	2:J:188:LYS:HE3	1.64	0.42		
2:N:172:THR:OG1	2:N:173:LEU:N	2.52	0.42		
1:A:394:LYS:HD2	1:A:421:CYS:HB3	2.02	0.42		
2:B:281:ILE:HG13	2:B:283:ARG:N	2.35	0.42		
2:F:22:ARG:HA	2:F:22:ARG:HD3	1.88	0.42		
2:F:219:THR:OG1	2:F:220:SER:N	2.52	0.42		
2:F:177:MET:HG3	2:F:236:THR:HG22	2.02	0.41		
1:A:10:GLU:OE2	1:A:442:LYS:NZ	2.47	0.41		
1:A:56:THR:O	1:A:60:ILE:HG22	2.21	0.41		
2:B:406:PRO:HA	2:B:407:PRO:HD3	1.84	0.41		
1:E:15:PHE:CD2	1:E:15:PHE:N	2.87	0.41		
2:J:79:TYR:O	2:J:123:ARG:HA	2.19	0.41		
2:N:234:ILE:HG23	2:N:235:ASN:HB2	2.00	0.41		
2:N:250:ARG:NH2	3:O:17:G:OP1	2.52	0.41		
2:B:188:LYS:H	2:B:188:LYS:HG2	1.65	0.41		
2:F:235:ASN:HB2	2:F:237:LYS:HG2	2.02	0.41		
2:J:217:PRO:O	2:J:222:CYS:N	2.46	0.41		
1:M:212:PRO:HA	1:M:219:SER:HA	2.02	0.41		
1:A:49:ASN:O	1:A:49:ASN:O 1:A:52:THR:OG1		0.41		
1:A:338:LYS:HG2	1:A:340:SER:H	1.85	0.41		
1:E:54:GLU:CD	1:E:54:GLU:CD 1:E:54:GLU:H		0.41		
2:N:55:ARG:HD2	2:N:55:ARG:HA	1.93	0.41		
1:A:157:ARG:HD2	1:A:157:ARG:HA	1.84	0.41		
2:B:217:PRO:HG2	2:B:218:ARG:HD2	2.02	0.41		
2:B:224:GLU:HG2	2:B:225:ILE:HG12	2.02	0.41		
2:N:132:LEU:HB3	2:N:134:ASN:HD22	1.85	0.41		
3:O:13:U:H2'	3:O:14:G:H8	1.84	0.41		
1:A:480:ASP:HB3	1:A:483:LYS:HG3	2.02	0.41		
1:E:17:ASP:C	1:E:19:HIS:H	2.28	0.41		
2:F:31:ASP:OD1	2:F:32:GLY:N	2.54	0.41		
2:J:193:ILE:HG22	2:J:195:ASN:H	1.85	0.41		
1:M:442:LYS:HB2	1:M:442:LYS:HE2	1.85	0.41		
2:B:63:SER:OG	2:B:64:THR:N	2.53	0.41		
1:I:35:GLN:HB2	1:I:244:ARG:HB3	2.03	0.41		
2:J:302:VAL:HG13	2:J:321:HIS:HB2	2.02	0.41		
4:L:17:DG:C2	4:L:18:DT:C2	3.08	0.41		

	1 · · · · · · · · · · · · · · · · · · ·	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:265:PHE:HB3	1:A:274:LEU:HD12	2.03	0.41	
2:B:8:ASN:ND2	5:Q:6:DT:O2	2.54	0.41	
2:B:190:ILE:HA	2:B:193:ILE:HG22	2.02	0.41	
2:F:277:TYR:HA	2:F:322:ALA:HB2	2.03	0.41	
2:F:282:GLU:OE1	2:F:284:GLU:HG2	2.21	0.41	
4:H:17:DG:H2"	4:H:18:DT:H5"	2.03	0.41	
2:J:139:ASN:OD1	2:J:139:ASN:N	2.53	0.41	
2:J:177:MET:HE3	2:J:235:ASN:CG	2.46	0.41	
2:J:424:LYS:HB3	2:J:424:LYS:HE3	1.73	0.41	
3:K:7:C:H2'	3:K:8:A:C8	2.56	0.41	
2:N:285:VAL:HG23	:N:285:VAL:HG23 2:N:286:SER:H 1.86		0.41	
5:Q:5:DC:H2'	5:Q:6:DT:C6	2.56	0.41	
2:B:280:ALA:CB	2:B:287:ARG:HG2	2.49	0.41	
2:F:44:ALA:O	2:F:56:MET:HA	2.21	0.41	
1:M:203:ASP:HB3	A:203:ASP:HB3 1:M:223:ILE:HD13 2.03		0.41	
2:N:276:LEU:O	2:N:322:ALA:HA	2.21	0.40	
1:M:369:GLU:N	1:M:369:GLU:OE1	2.54	0.40	
2:B:10:ILE:HD13	2:B:10:ILE:HA	1.96	0.40	
2:B:35:ARG:HE	2:F:13:GLU:HB2	1.87	0.40	
2:B:180:ALA:HB3	2:B:211:PHE:HB2	2.03	0.40	
2:J:297:LYS:HZ1	2:J:299:ASP:HB3	1.87	0.40	
2:N:279:ARG:NH1	2:N:282:GLU:O	2.54	0.40	
1:A:58:LYS:NZ	1:A:58:LYS:HA	2.36	0.40	
3:K:3:A:H2'	3:K:4:C:C6	2.57	0.40	
1:A:120:ARG:O	1:A:124:MET:HG3	2.21	0.40	
2:B:16:GLU:HG2	2:B:61:ILE:HD12	2.03	0.40	
2:N:140:LYS:O	2:N:143:ALA:HB3	2.21	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	464/485~(96%)	439~(95%)	25~(5%)	0	100	100
1	Ε	464/485~(96%)	429 (92%)	35~(8%)	0	100	100
1	Ι	461/485~(95%)	428 (93%)	33~(7%)	0	100	100
1	М	461/485~(95%)	427~(93%)	34 (7%)	0	100	100
2	В	406/442~(92%)	360~(89%)	46 (11%)	0	100	100
2	F	405/442~(92%)	352 (87%)	53~(13%)	0	100	100
2	J	383/442~(87%)	340 (89%)	43 (11%)	0	100	100
2	Ν	383/442~(87%)	313 (82%)	70 (18%)	0	100	100
All	All	3427/3708~(92%)	3088 (90%)	339 (10%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
1	А	394/408~(97%)	392 (100%)	2 (0%)	86	93
1	Ε	394/408~(97%)	390~(99%)	4 (1%)	73	87
1	Ι	393/408~(96%)	392 (100%)	1 (0%)	91	96
1	М	393/408~(96%)	388~(99%)	5 (1%)	65	83
2	В	352/380~(93%)	347~(99%)	5 (1%)	62	82
2	\mathbf{F}	351/380~(92%)	347~(99%)	4 (1%)	70	86
2	J	336/380~(88%)	330~(98%)	6 (2%)	54	77
2	Ν	336/380~(88%)	$330 \ (98\%)$	6(2%)	54	77
All	All	2949/3152~(94%)	2916 (99%)	33 (1%)	69	86

All (33) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	58	LYS
1	А	155	LEU

Mol	Chain	Res	Type
2	В	35	ARG
2	В	36	LEU
2	В	85	ASP
2	В	193	ILE
2	В	279	ARG
1	Е	15	PHE
1	Е	17	ASP
1	Е	427	GLU
1	Е	476	VAL
2	F	66	GLU
2	F	225	ILE
2	F	307	LYS
2	F	315	VAL
1	Ι	343	LYS
2	J	235	ASN
2	J	237	LYS
2	J	238	GLU
2	J	243	ASP
2	J	365	LEU
2	J	424	LYS
1	М	14	GLU
1	М	112	ILE
1	М	376	LEU
1	М	454	LEU
1	М	456	ILE
2	N	185	GLU
2	Ν	187	ARG
2	N	188	LYS
2	Ν	281	ILE
2	N	307	LYS
2	N	310	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (21) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	181	ASN
1	А	224	GLN
2	В	333	GLN
1	Е	118	HIS
1	Е	273	GLN
2	F	60	GLN
2	F	195	ASN

Mol	Chain	Res	Type
2	F	249	ASN
2	F	352	HIS
2	F	384	GLN
1	Ι	213	GLN
1	Ι	424	HIS
2	J	273	HIS
2	J	410	HIS
1	М	21	HIS
1	М	198	GLN
1	М	424	HIS
1	М	444	ASN
2	N	17	ASN
2	N	29	GLN
2	Ν	249	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
3	С	18/20~(90%)	3~(16%)	0
3	G	19/20~(95%)	3~(15%)	0
3	Κ	17/20~(85%)	1 (5%)	0
3	0	18/20~(90%)	3~(16%)	1 (5%)
All	All	72/80~(90%)	10~(13%)	1 (1%)

All (10) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
3	С	12	С
3	С	13	U
3	С	19	U
3	G	4	С
3	G	15	А
3	G	18	А
3	Κ	14	G
3	0	16	С
3	0	17	G
3	0	19	U

All (1) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
3	0	18	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 6 ligands modelled in this entry, 6 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

