wwPDB EM Validation Summary Report (i) #### May 21, 2024 – 10:12 AM JST PDB ID : 8HYJ EMDB ID : EMD-35086 Title: A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex Authors: Zhang, H.; Zhang, Y. Deposited on : 2023-01-06 Resolution : 4.30 Å(reported) This is a wwPDB EM Validation Summary Report for a publicly released PDB entry. We welcome your comments at *validation@mail.wwpdb.org*A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol. The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types. The following versions of software and data (see references (1)) were used in the production of this report: EMDB validation analysis : FAILED MolProbity : 4.02b-467 Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019) MapQ : FAILED Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996) Validation Pipeline (wwPDB-VP) : 2.36.2 ## 1 Overall quality at a glance (i) The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$ The reported resolution of this entry is 4.30 Å. Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based. | Metric | Whole archive $(\# \mathrm{Entries})$ | ${ m EM\ structures} \ (\#{ m Entries})$ | |-----------------------|---------------------------------------|--| | Clashscore | 158937 | 4297 | | Ramachandran outliers | 154571 | 4023 | | Sidechain outliers | 154315 | 3826 | | RNA backbone | 4643 | 859 | The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% | Mol | Chain | Length | Quality of ch | ain | |-----|-------|--------|---------------|-----------| | 1 | A | 1976 | 45% 13% | 42% | | 2 | В | 1172 | 73% | 16% • 10% | | 3 | С | 319 | 70% | 18% • 11% | | 4 | D | 205 | 39% 18% | 43% | | 5 | E | 222 | 71% | 23% 6% | | 6 | F | 144 | | | | | | | 43% 10% | 47% | | 7 | G | 178 | 75% | 25% | | 8 | Н | 146 | 69% | 15% 16% | $Continued\ from\ previous\ page...$ | Mol | Chain | Length | - 0 | Quality of chain | 1 | | | |-----|-------|--------|---------|------------------|-----|----|-----| | 9 | I | 114 | 739 | // 6 | 12% | | 14% | | 10 | J | 71 | 70% | | 15% | • | 13% | | 11 | K | 116 | 72% | 6 | 12% | • | 14% | | 12 | L | 51 | 63% | | 20% | | 18% | | 13 | N | 48 | 38% | 35% | • | 25 | % | | 14 | Р | 30 | 10% 23% | | 67% | | | | 15 | Т | 48 | 33% | 44% | | 23 | 3% | | 16 | W | 1493 | | 97% | | | | # 2 Entry composition (i) There are 18 unique types of molecules in this entry. The entry contains 28568 atoms, of which 0 are hydrogens and 0 are deuteriums. In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms. • Molecule 1 is a protein called DNA-directed RNA polymerase V subunit 1. | Mol | Chain | Residues | | A | AltConf | Trace | | | | |-----|-------|----------|---------------|-----------|-----------|-----------|---------|---|---| | 1 | A | 1141 | Total
8794 | C
5540 | N
1526 | O
1672 | S
56 | 0 | 0 | • Molecule 2 is a protein called DNA-directed RNA polymerases IV and V subunit 2. | Mol | Chain | Residues | | A | AltConf | Trace | | | | |-----|-------|----------|-------|------|---------|-------|----|---|---| | 2 | R | 1054 | Total | С | N | О | S | 0 | 0 | | | Б | 1004 | 7912 | 5047 | 1426 | 1400 | 39 | | U | • Molecule 3 is a protein called DNA-directed RNA polymerases IV and V subunit 3B. | Mol | Chain | Residues | | At | AltConf | Trace | | | | |-----|-------|----------|---------------|-----------|----------|----------|---------|---|---| | 3 | С | 285 | Total
2123 | C
1351 | N
360 | O
398 | S
14 | 0 | 0 | • Molecule 4 is a protein called DNA-directed RNA polymerases IV and V subunit 4. | Mol | Chain | Residues | | At | oms | AltConf | Trace | | | |-----|-------|----------|--------------|----------|----------|----------|--------|---|---| | 4 | D | 117 | Total
896 | C
566 | N
142 | O
181 | S
7 | 0 | 0 | • Molecule 5 is a protein called DNA-directed RNA polymerase V subunit 5A. | Mol | Chain | Residues | | Ato | AltConf | Trace | | | | |-----|-------|----------|---------------|-----------|----------|----------|--------|---|---| | 5 | E | 209 | Total
1652 | C
1050 | N
283 | O
316 | S
3 | 0 | 0 | • Molecule 6 is a protein called DNA-directed RNA polymerases II, IV and V subunit 6A. | Mol | Chain | Residues | | Ato | ms | AltConf | Trace | | | |-----|-------|----------|--------------|----------|---------|---------|--------|---|---| | 6 | F | 76 | Total
554 | C
355 | N
97 | O
99 | S
3 | 0 | 0 | • Molecule 7 is a protein called DNA-directed RNA polymerase V subunit 7. | Mol | Chain | Residues | | \mathbf{A} | toms | AltConf | Trace | | | |-----|-------|----------|---------------|--------------|----------|----------|---------|---|---| | 7 | G | 178 | Total
1417 | C
926 | N
227 | O
253 | S
11 | 0 | 0 | • Molecule 8 is a protein called DNA-directed RNA polymerases II and V subunit 8A. | Mol | Chain | Residues | | At | oms | AltConf | Trace | | | |-----|-------|----------|-------|-----|-----|---------|-------|---|---| | 0 | П | 123 | Total | С | N | О | S | 0 | 0 | | 0 | п | 123 | 904 | 597 | 142 | 160 | 5 | 0 | U | • Molecule 9 is a protein called DNA-directed RNA polymerases II, IV and V subunit 9A. | Mol | Chain | Residues | | A | toms | AltConf | Trace | | | |-----|-------|----------|--------------|----------|----------|----------|---------|---|---| | 9 | I | 98 | Total
702 | C
436 | N
131 | O
124 | S
11 | 0 | 0 | • Molecule 10 is a protein called DNA-directed RNA polymerases II, IV and V subunit 10. | Mol | Chain | Residues | | Ato | ms | | | AltConf | Trace | |-----|-------|----------|-------|-----|----|----|---|---------|-------| | 10 | Т | 62 | Total | С | N | О | S | 0 | 0 | | 10 | J | 02 | 484 | 316 | 83 | 79 | 6 | 0 | U | • Molecule 11 is a protein called DNA-directed RNA polymerases II, IV and V subunit 11. | Mol | Chain | Residues | Atoms | | | | AltConf | Trace | | |-----|-------|----------|--------------|----------|----------|----------|---------|-------|---| | 11 | К | 100 | Total
756 | C
482 | N
138 | O
135 | S
1 | 0 | 0 | • Molecule 12 is a protein called DNA-directed RNA polymerases II, IV and V subunit 12. | Mol | Chain | Residues | | Ato | ms | | | AltConf | Trace | |-----|-------|----------|-------|-----|----|----|---|---------|-------| | 19 | Т | 42 | Total | С | N | О | S | 0 | 0 | | 12 | 12 L | 42 | 309 | 192 | 54 | 59 | 4 | U | U | • Molecule 13 is a DNA chain called DNA (48-MER). | Mol | Chain | Residues | | A | toms | | | AltConf | Trace | |-----|-------|----------|--------------|----------|----------|----------|---------|---------|-------| | 13 | N | 36 | Total
749 | C
356 | N
139 | O
218 | P
36 | 0 | 0 | • Molecule 14 is a RNA chain called RNA (30-MER). | Mol | Chain | Residues | | At | oms | | | AltConf | Trace | |-----|-------|----------|--------------|---------|---------|---------|---------|---------|-------| | 14 | Р | 10 | Total
218 | C
97 | N
42 | O
69 | P
10 | 0 | 0 | • Molecule 15 is a DNA chain called DNA (48-MER). | Mol | Chain | Residues | | A | toms | | | AltConf | Trace | |-----|-------|----------|--------------|----------|----------|----------|---------|---------|-------| | 15 | Т | 37 | Total
746 | C
356 | N
133 | O
220 | P
37 | 0 | 0 | • Molecule 16 is a protein called Protein RNA-directed DNA methylation 3. | Mol | Chain | Residues | | Ato | ms | | | AltConf | Trace | |-----|-------|----------|--------------|----------|---------|---------|--------|---------|-------| | 16 | W | 44 | Total
347 | C
223 | N
63 | O
60 | S
1 | 0 | 0 | • Molecule 17 is MAGNESIUM ION (three-letter code: MG) (formula: Mg). | Mol | Chain | Residues | Atoms | AltConf | |-----|-------|----------|-----------------|---------| | 17 | A | 1 | Total Mg
1 1 | 0 | • Molecule 18 is ZINC ION (three-letter code: ZN) (formula: Zn). | Mol | Chain | Residues | Atoms | AltConf | |-----|-------|----------|-----------------|---------| | 18 | С | 1 | Total Zn
1 1 | 0 | | 18 | I | 1 | Total Zn
1 1 | 0 | | 18 | J | 1 | Total Zn
1 1 | 0 | | 18 | L | 1 | Total Zn
1 1 | 0 | ## 3 Residue-property plots (i) These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey. • Molecule 1: DNA-directed RNA polymerase V subunit 1 • Molecule 2: DNA-directed RNA polymerases IV and V subunit 2 • Molecule 3: DNA-directed RNA polymerases IV and V subunit 3B • Molecule 4: DNA-directed RNA polymerases IV and V subunit 4 • Molecule 5: DNA-directed RNA polymerase V subunit 5A • Molecule 6: DNA-directed RNA polymerases II, IV and V subunit 6A Chain L: 20% 18% 63% # 4 Experimental information (i) | Property | Value | Source | |----------------------------------|---------------------|-----------| | EM reconstruction method | SINGLE PARTICLE | Depositor | | Imposed symmetry | POINT, Not provided | | | Number of particles used | 30359 | Depositor | | Resolution determination method | FSC 0.143 CUT-OFF | Depositor | | CTF correction method | PHASE FLIPPING ONLY | Depositor | | Microscope | FEI TITAN KRIOS | Depositor | | Voltage (kV) | 300 | Depositor | | Electron dose $(e^-/\text{Å}^2)$ | 50 | Depositor | | Minimum defocus (nm) | 1200 | Depositor | | Maximum defocus (nm) | 2200 | Depositor | | Magnification | Not provided | | | Image detector | GATAN K3 (6k x 4k) | Depositor | # 5 Model quality (i) ### 5.1 Standard geometry (i) Bond lengths and bond angles in the following residue types are not validated in this section: ZN, MG The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles). | Mol | Chain | Bo | nd lengths | В | ond angles | |-------|-------|------|---------------------|------|-----------------| | IVIOI | Chain | RMSZ | # Z > 5 | RMSZ | # Z > 5 | | 1 | A | 0.39 | 0/8949 | 0.52 | 4/12093~(0.0%) | | 2 | В | 1.02 | 0/8074 | 0.90 | 15/10929 (0.1%) | | 3 | С | 1.11 | 0/2156 | 0.93 | 3/2929 (0.1%) | | 4 | D | 0.27 | 0/909 | 0.45 | 0/1232 | | 5 | Е | 0.24 | 0/1678 | 0.42 | 0/2271 | | 6 | F | 0.25 | 0/564 | 0.41 | 0/767 | | 7 | G | 0.27 | 0/1448 | 0.46 | 0/1951 | | 8 | Н | 0.26 | 0/919 | 0.42 | 0/1244 | | 9 | I | 0.28 | 0/716 | 0.52 | 0/973 | | 10 | J | 1.20 | 0/492 | 1.01 | 2/666~(0.3%) | | 11 | K | 1.06 | 0/770 | 0.82 | 0/1045 | | 12 | L | 1.07 | 0/312 | 1.05 | 2/420~(0.5%) | | 13 | N | 0.54 | 1/840 (0.1%) | 0.83 | 1/1295~(0.1%) | | 14 | Р | 0.25 | 0/244 | 0.66 | 0/379 | | 15 | T | 0.54 | 0/834 | 0.85 | 0/1281 | | 16 | W | 0.88 | 1/351 (0.3%) | 0.98 | 1/470~(0.2%) | | All | All | 0.73 | $2/29256 \ (0.0\%)$ | 0.72 | 28/39945 (0.1%) | All (2) bond length outliers are listed below: | Mol | Chain | Res | Type | Atoms | \mathbf{Z} | $\operatorname{Observed}(\text{\AA})$ | $Ideal(\AA)$ | |-----|-------|-----|------|-------|--------------|---------------------------------------|--------------| | 16 | W | 642 | SER | CA-CB | -5.84 | 1.44 | 1.52 | | 13 | N | 2 | DT | O3'-P | 5.41 | 1.67 | 1.61 | The worst 5 of 28 bond angle outliers are listed below: | Mol | Chain | Res | Type | Atoms | \mathbf{Z} | $Observed(^o)$ | $\operatorname{Ideal}(^{o})$ | |-----|-------|-----|------|--------|--------------|----------------|------------------------------| | 2 | В | 304 | ASP | N-CA-C | -7.36 | 91.14 | 111.00 | | 2 | В | 72 | GLY | N-CA-C | 7.34 | 131.45 | 113.10 | | 2 | В | 798 | GLY | N-CA-C | 6.89 | 130.33 | 113.10 | Continued on next page... Continued from previous page... | Mol | Chain | Res | Type | Atoms | \mathbf{Z} | $\mathbf{Observed}(^o)$ | $\operatorname{Ideal}({}^{o})$ | |-----|-------|-----|------|----------|--------------|-------------------------|--------------------------------| | 12 | L | 44 | ARG | N-CA-C | -6.70 | 92.92 | 111.00 | | 1 | A | 903 | LEU | CA-CB-CG | 6.40 | 130.02 | 115.30 | There are no chirality outliers. There are no planarity outliers. ### 5.2 Too-close contacts (i) In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes. | Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes | |-----|-------|-------|----------|----------|---------|--------------| | 1 | A | 8794 | 0 | 8748 | 214 | 0 | | 2 | В | 7912 | 0 | 7591 | 148 | 0 | | 3 | С | 2123 | 0 | 2089 | 42 | 0 | | 4 | D | 896 | 0 | 899 | 25 | 0 | | 5 | Ε | 1652 | 0 | 1634 | 58 | 0 | | 6 | F | 554 | 0 | 516 | 12 | 0 | | 7 | G | 1417 | 0 | 1459 | 31 | 0 | | 8 | Н | 904 | 0 | 851 | 13 | 0 | | 9 | I | 702 | 0 | 609 | 9 | 0 | | 10 | J | 484 | 0 | 486 | 7 | 0 | | 11 | K | 756 | 0 | 716 | 9 | 0 | | 12 | L | 309 | 0 | 282 | 5 | 0 | | 13 | N | 749 | 0 | 409 | 20 | 0 | | 14 | Р | 218 | 0 | 109 | 3 | 0 | | 15 | Τ | 746 | 0 | 416 | 31 | 0 | | 16 | W | 347 | 0 | 366 | 6 | 0 | | 17 | A | 1 | 0 | 0 | 0 | 0 | | 18 | С | 1 | 0 | 0 | 0 | 0 | | 18 | I | 1 | 0 | 0 | 0 | 0 | | 18 | J | 1 | 0 | 0 | 0 | 0 | | 18 | L | 1 | 0 | 0 | 0 | 0 | | All | All | 28568 | 0 | 27180 | 541 | 0 | The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 10. The worst 5 of 541 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude. | Atom-1 | Atom-2 | $\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$ | Clash
overlap (Å) | |-------------------|-----------------|--|----------------------| | 2:B:116:PHE:CZ | 2:B:121:ALA:HB2 | 1.36 | 1.56 | | 1:A:1060:ARG:NH2 | 5:E:210:GLU:HG2 | 1.47 | 1.29 | | 1:A:1060:ARG:HH22 | 5:E:210:GLU:CG | 1.47 | 1.27 | | 2:B:116:PHE:CZ | 2:B:121:ALA:CB | 2.20 | 1.25 | | 2:B:116:PHE:HZ | 2:B:121:ALA:CB | 1.51 | 1.23 | There are no symmetry-related clashes. ### 5.3 Torsion angles (i) #### 5.3.1 Protein backbone (i) In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries. The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues. | Mol | Chain | Analysed | Favoured | Allowed | Outliers | Perce | ntiles | |-----|-------|-----------------|------------|----------|----------|-------|--------| | 1 | A | 1131/1976 (57%) | 1077 (95%) | 54 (5%) | 0 | 100 | 100 | | 2 | В | 1032/1172 (88%) | 966 (94%) | 66 (6%) | 0 | 100 | 100 | | 3 | С | 281/319 (88%) | 233 (83%) | 48 (17%) | 0 | 100 | 100 | | 4 | D | 115/205 (56%) | 109 (95%) | 6 (5%) | 0 | 100 | 100 | | 5 | Е | 207/222 (93%) | 189 (91%) | 18 (9%) | 0 | 100 | 100 | | 6 | F | 74/144 (51%) | 74 (100%) | 0 | 0 | 100 | 100 | | 7 | G | 176/178 (99%) | 166 (94%) | 10 (6%) | 0 | 100 | 100 | | 8 | Н | 117/146 (80%) | 114 (97%) | 3 (3%) | 0 | 100 | 100 | | 9 | I | 94/114 (82%) | 86 (92%) | 8 (8%) | 0 | 100 | 100 | | 10 | J | 60/71 (84%) | 52 (87%) | 8 (13%) | 0 | 100 | 100 | | 11 | K | 98/116 (84%) | 96 (98%) | 2 (2%) | 0 | 100 | 100 | | 12 | L | 40/51 (78%) | 40 (100%) | 0 | 0 | 100 | 100 | | 16 | W | 40/1493 (3%) | 39 (98%) | 1 (2%) | 0 | 100 | 100 | | All | All | 3465/6207 (56%) | 3241 (94%) | 224 (6%) | 0 | 100 | 100 | There are no Ramachandran outliers to report. #### 5.3.2 Protein sidechains (i) In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues. | Mol | Chain | Analysed | Rotameric | Outliers | Perce | ntiles | |-----|-------|-----------------|------------|----------|-------|--------| | 1 | A | 974/1710 (57%) | 967 (99%) | 7 (1%) | 84 | 90 | | 2 | В | 786/1029 (76%) | 764 (97%) | 22 (3%) | 43 | 65 | | 3 | С | 221/282 (78%) | 214 (97%) | 7 (3%) | 39 | 62 | | 4 | D | 103/181 (57%) | 103 (100%) | 0 | 100 | 100 | | 5 | E | 181/204 (89%) | 181 (100%) | 0 | 100 | 100 | | 6 | F | 50/128 (39%) | 50 (100%) | 0 | 100 | 100 | | 7 | G | 154/155 (99%) | 154 (100%) | 0 | 100 | 100 | | 8 | Н | 84/127 (66%) | 84 (100%) | 0 | 100 | 100 | | 9 | I | 66/104 (64%) | 65 (98%) | 1 (2%) | 65 | 80 | | 10 | J | 49/66 (74%) | 45 (92%) | 4 (8%) | 11 | 37 | | 11 | K | 72/105 (69%) | 66 (92%) | 6 (8%) | 11 | 37 | | 12 | L | 30/45 (67%) | 28 (93%) | 2 (7%) | 16 | 43 | | 16 | W | 38/1156 (3%) | 35 (92%) | 3 (8%) | 12 | 38 | | All | All | 2808/5292 (53%) | 2756 (98%) | 52 (2%) | 59 | 75 | 5 of 52 residues with a non-rotameric sidechain are listed below: | Mol | Chain | Res | Type | |-----|-------|------|------| | 2 | В | 1046 | ASP | | 3 | С | 243 | GLU | | 16 | W | 616 | ILE | | 3 | С | 28 | GLU | | 3 | С | 98 | HIS | Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 59 such sidechains are listed below: | Mol | Chain | Res | Type | |-----|-------|-----|------| | 2 | В | 678 | GLN | | 11 | K | 55 | ASN | Continued on next page... Continued from previous page... | Mol | Chain | Res | Type | |-----|-------|-----|------| | 2 | В | 955 | GLN | | 10 | J | 61 | ASN | | 8 | Н | 46 | ASN | #### 5.3.3 RNA (i) | Mol | Chain | Analysed | Backbone Outliers | Pucker Outliers | |-----|-------|------------|-------------------|-----------------| | 14 | Р | 9/30 (30%) | 3 (33%) | 0 | All (3) RNA backbone outliers are listed below: | Mol | Chain | Res | Type | |-----|-------|-----|------| | 14 | Р | 8 | G | | 14 | Р | 9 | G | | 14 | Р | 10 | U | There are no RNA pucker outliers to report. ### 5.4 Non-standard residues in protein, DNA, RNA chains (i) There are no non-standard protein/DNA/RNA residues in this entry. ### 5.5 Carbohydrates (i) There are no monosaccharides in this entry. ### 5.6 Ligand geometry (i) Of 5 ligands modelled in this entry, 5 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers. There are no bond angle outliers. There are no chirality outliers. There are no torsion outliers. There are no ring outliers. No monomer is involved in short contacts. ## 5.7 Other polymers (i) There are no such residues in this entry. ## 5.8 Polymer linkage issues (i) There are no chain breaks in this entry.