

wwPDB EM Validation Summary Report (i)

Jun 16, 2025 – 02:50 PM JST

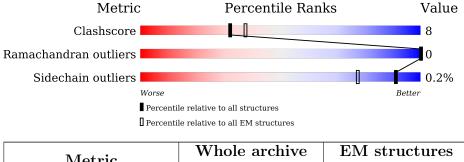
PDB ID	:	8 HR1 / pdb_00008hr1
EMDB ID	:	EMD-34956
Title	:	Cryo-EM structure of SSX1 bound to the unmodified nucleosome at a resolu-
		tion of 3.02 angstrom
Authors	:	Zebin, T.; Ai, H.S.; Ziyu, X.; Man, P.; Liu, L.
Deposited on		
Resolution	:	3.02 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:


:	0.0.1.dev118
:	4-5-2 with Phenix2.0rc1
:	20231227.v01 (using entries in the PDB archive December 27th 2023)
:	1.9.13
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.44
	::

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.02 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive (#Entries)	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	97	• 84%	16%
1	Е	97	82%	15% •
2	В	83	6% 83%	17%
2	F	83	5%	18% •
3	С	107	94%	6%
3	G	107	86%	13% •
4	D	91	92%	8%
4	Н	91	• 91%	9%

Continued on next page...

Continued from previous page...

Mol	Chain		Quality of chain	
-	q		36%	
5	S	14	64%	36%
	т		<u> </u>	
6	1	147	85%	15%
	_		5%	
7	J	147	86%	14%

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 12110 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	97	Total 801	C 505				0	0
1	Е	95	Total 783		N 150			0	0

• Molecule 1 is a protein called Histone H3.

• Molecule 2 is a protein called Histone H4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
2	В	83	Total 668		N 132		S 1	0	0
2	F	81	Total 648	С		0	S 1	0	0

• Molecule 3 is a protein called Histone H2A type 1-B/E.

Mol	Chain	Residues	Atoms	AltConf	Trace
3	С	107	Total C N O S 825 520 161 143 1	0	0
3	G	106	Total C N O 815 514 159 142	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	119	CYS	-	expression tag	UNP P04908
G	119	CYS	-	expression tag	UNP P04908

• Molecule 4 is a protein called Histone H2B type 1-K.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	91	Total 707	C 446	N 125	0 134	$\frac{S}{2}$	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
4	Ц	01	Total	С	Ν	0	S	0	0
4	11	91	707	446	125	134	2	0	0

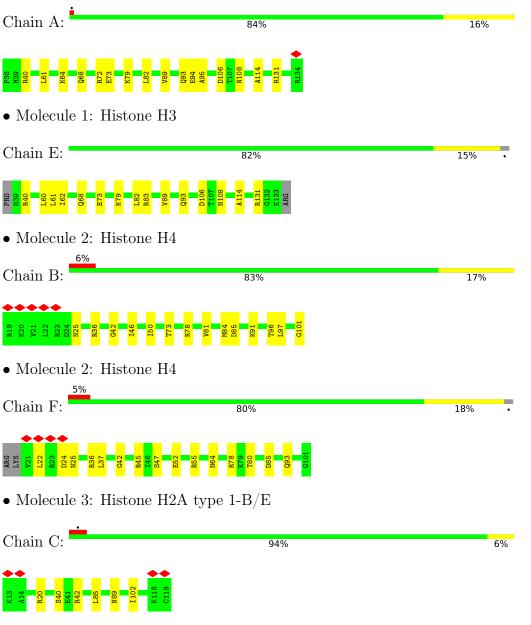
• Molecule 5 is a protein called SSX1.

Mol	Chain	Residues		Ator	\mathbf{ns}	AltConf	Trace	
5	S	14	Total 129	C 81	N 30	O 18	0	0

• Molecule 6 is a DNA chain called DNA (147-MER).

Mol	Chain	Residues	Atoms			AltConf	Trace		
6	Ι	147	Total 3031	C 1434	N 570	O 880	Р 147	0	0

• Molecule 7 is a DNA chain called DNA (147-MER).


Mol	Chain	Residues	Atoms			AltConf	Trace		
7	J	147	Total 2996	C 1423	N 542	0 884	Р 147	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Histone H3

• Molecule 3: Histone H2A type 1-B/E

Chain G:	86%	13% •
K13 A14 K16 K16 R20 R20 R20 R20 R21 R42 R41 R42 L51	179 179 180 181 181 105 105 105 117 117 115 117 117	
• Molecule 4: Histor	ne H2B type 1-K	
Chain D:	92%	8%
K34 E35 Y37 Y37 Y336 Y33 Y61 H109 H109		
• Molecule 4: Histor	ne H2B type 1-K	
Chain H:	91%	9%
K34 E35 836 836 836 836 83 88 788 194 194 194 194		
• Molecule 5: SSX1		
Chain S:	64%	36%
H162		
• Molecule 6: DNA	(147-MER)	
Chain I:	85%	15%
A - 73 A - 71 A - 71 A - 71 A - 73 A - 71 A - 73 A - 73 A - 73 A - 73 A - 71 A - 73 A - 71 A - 71 A - 73 A - 71 A - 73 A - 74 A - 7	G - 6 G - 6 G - 6 G - 6 G - 4 A 16 C 19 C 19	M 10
• Molecule 7: DNA	(147-MER)	
Chain J:	86%	14%
C-73 -7-7 -7-7 -7-7 -6-71 -6-8 -7-8	G 552 C 46 C 46 C 46 C 46 C 7 4 C 4 C 4 C 4 C 4 C 4 C 4 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	151369	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.084	Depositor
Minimum map value	-0.033	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.002	Depositor
Recommended contour level	0.018	Depositor
Map size (Å)	274.944, 274.944, 274.944	wwPDB
Map dimensions	256, 256, 256	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.074, 1.074, 1.074	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond	angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.45	0/813	0.60	0/1090
1	Ε	0.41	0/794	0.55	0/1065
2	В	0.47	0/675	0.61	0/903
2	F	0.45	0/655	0.55	0/878
3	С	0.42	0/835	0.54	0/1126
3	G	0.40	0/825	0.51	0/1114
4	D	0.44	0/718	0.50	0/967
4	Н	0.44	0/718	0.53	0/967
5	S	0.39	0/132	0.69	0/176
6	Ι	0.43	0/3404	0.43	0/5256
7	J	0.43	0/3356	0.42	0/5173
All	All	0.43	0/12925	0.49	0/18715

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	801	0	839	12	0
1	Е	783	0	818	11	0
2	В	668	0	719	11	0
2	F	648	0	693	11	0
3	С	825	0	884	5	0

Continued on next page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes		
3	G	815	0	868	12	0		
4	D	707	0	725	5	0		
4	Н	707	0	725	6	0		
5	S	129	0	132	4	0		
6	Ι	3031	0	1649	17	0		
7	J	2996	0	1651	22	0		
All	All	12110	0	9703	81	0		

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

The worst 5 of 81 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:E:68:GLN:HG2	1:E:89:VAL:HG11	1.76	0.68
2:B:46:ILE:HG23	2:B:50:ILE:HD12	1.79	0.65
5:S:164:TRP:HB3	5:S:167:ARG:HB2	1.81	0.63
1:A:68:GLN:OE1	1:A:72:ARG:NH1	2.25	0.62
1:E:62:ILE:HB	1:E:93:GLN:HE22	1.66	0.60

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	95/97~(98%)	91 (96%)	4 (4%)	0	100 100
1	Е	93/97~(96%)	91 (98%)	2(2%)	0	100 100
2	В	81/83~(98%)	78~(96%)	3 (4%)	0	100 100
2	F	79/83~(95%)	75~(95%)	4(5%)	0	100 100
3	С	105/107~(98%)	102 (97%)	3(3%)	0	100 100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
3	G	104/107~(97%)	100 (96%)	4 (4%)	0	100	100
4	D	89/91~(98%)	88~(99%)	1 (1%)	0	100	100
4	Н	89/91~(98%)	88 (99%)	1 (1%)	0	100	100
5	S	12/14~(86%)	11 (92%)	1 (8%)	0	100	100
All	All	747/770~(97%)	724 (97%)	23 (3%)	0	100	100

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	85/85~(100%)	85 (100%)	0	100	100
1	Ε	83/85~(98%)	83 (100%)	0	100	100
2	В	69/69~(100%)	69~(100%)	0	100	100
2	\mathbf{F}	67/69~(97%)	66~(98%)	1 (2%)	60	82
3	\mathbf{C}	85/85~(100%)	85 (100%)	0	100	100
3	G	83/85~(98%)	83 (100%)	0	100	100
4	D	77/77~(100%)	77~(100%)	0	100	100
4	Η	77/77~(100%)	77~(100%)	0	100	100
5	S	13/13~(100%)	13~(100%)	0	100	100
All	All	639/645~(99%)	638 (100%)	1 (0%)	91	97

All (1) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	F	25	ASN

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 6 such side chains are listed below:

Mol	Chain	Res	Type
3	G	84	GLN
3	G	89	ASN
4	Н	84	ASN
1	Е	76	GLN
4	D	84	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

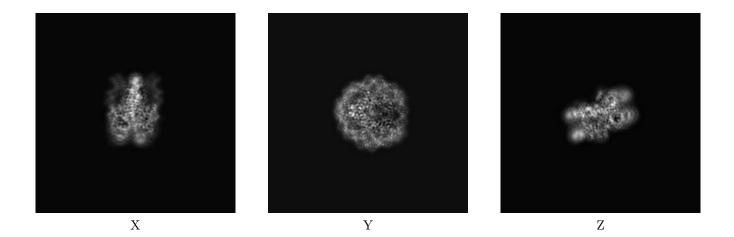
There are no ligands in this entry.

5.7 Other polymers (i)

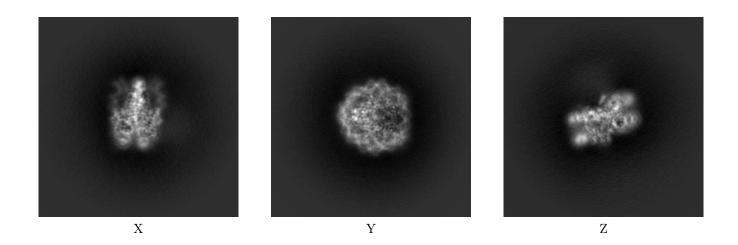
There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.


6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-34956. These allow visual inspection of the internal detail of the map and identification of artifacts.

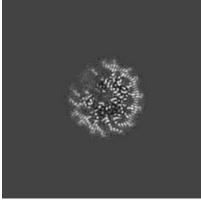

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

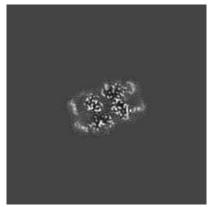
6.1.1 Primary map

6.1.2 Raw map

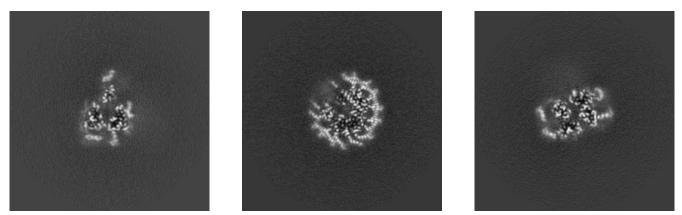
The images above show the map projected in three orthogonal directions.



6.2 Central slices (i)


6.2.1 Primary map

X Index: 128



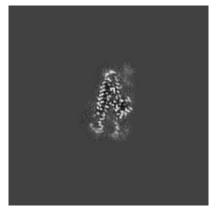
Y Index: 128

Z Index: 128

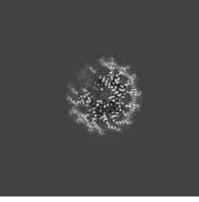
6.2.2 Raw map

X Index: 128

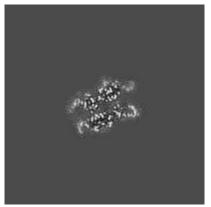
Y Index: 128


Z Index: 128

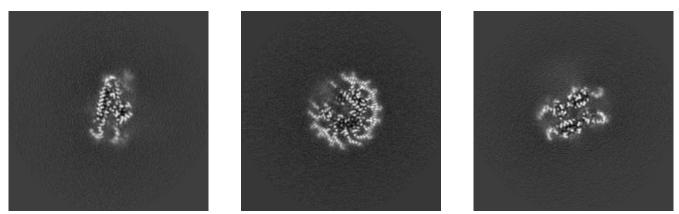
The images above show central slices of the map in three orthogonal directions.



6.3 Largest variance slices (i)


6.3.1 Primary map

X Index: 142



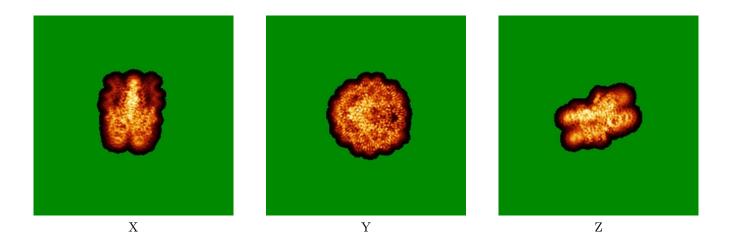
Y Index: 128

Z Index: 122

6.3.2 Raw map

X Index: 142

Y Index: 128



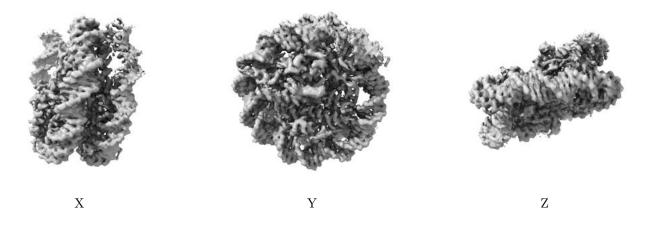
The images above show the largest variance slices of the map in three orthogonal directions.



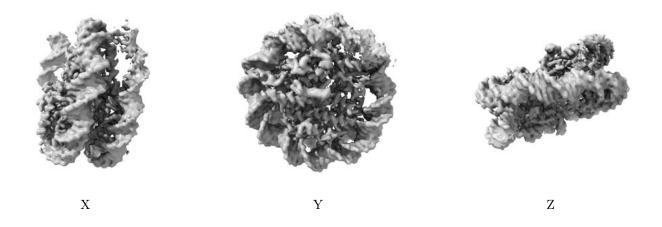
6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

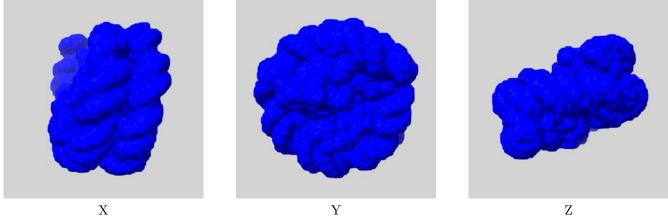

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.018. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

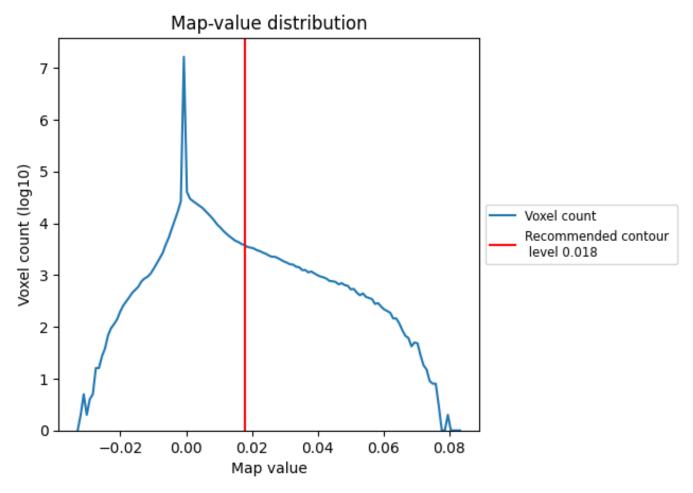

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

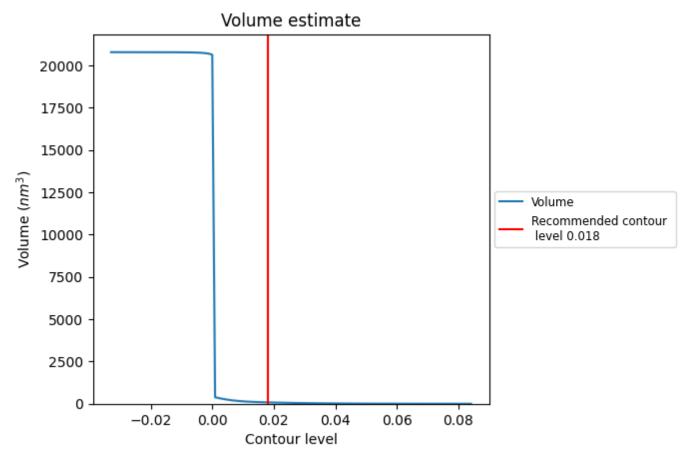
- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_34956_msk_1.map (i) 6.6.1



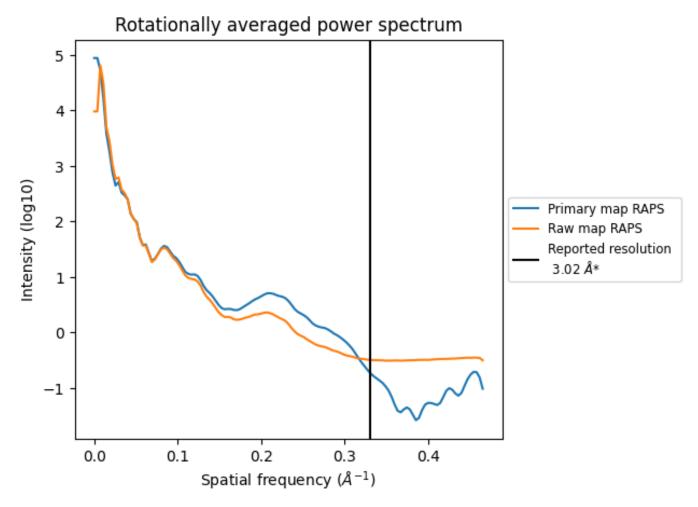
7 Map analysis (i)

This section contains the results of statistical analysis of the map.


7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

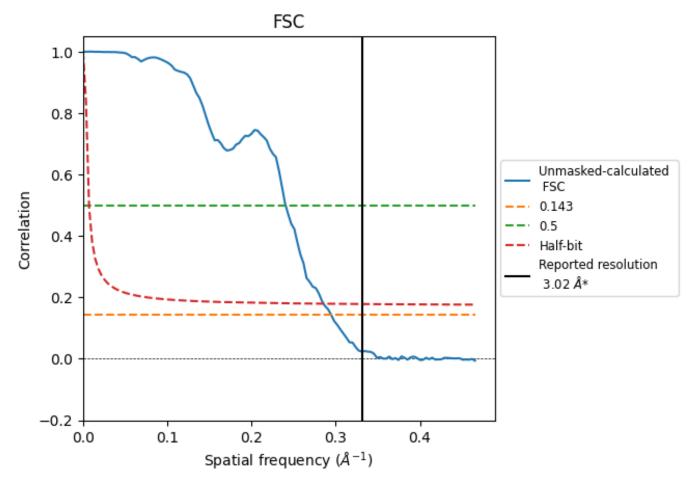
7.2 Volume estimate (i)



The volume at the recommended contour level is 80 nm^3 ; this corresponds to an approximate mass of 73 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)


*Reported resolution corresponds to spatial frequency of 0.331 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

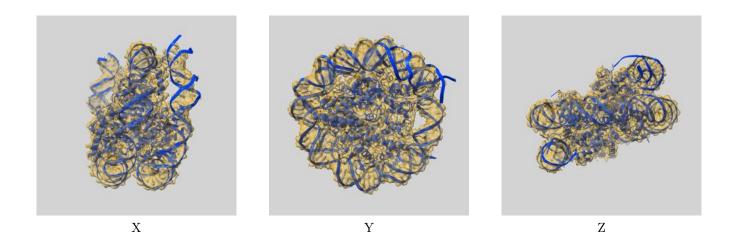
Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.331 \AA^{-1}

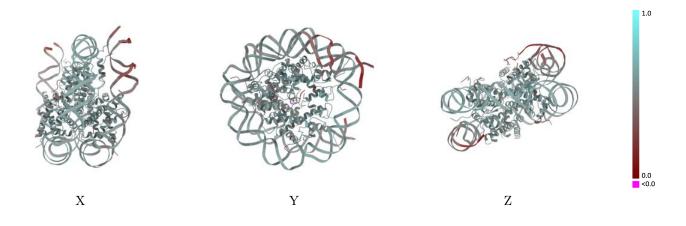
8.2 Resolution estimates (i)

Resolution estimate (Å)	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.02	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	3.39	4.16	3.50

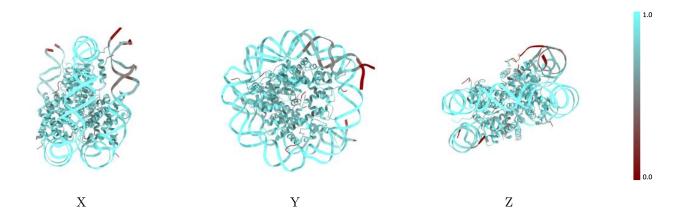

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.39 differs from the reported value 3.02 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-34956 and PDB model 8HR1. Per-residue inclusion information can be found in section 3 on page 6.

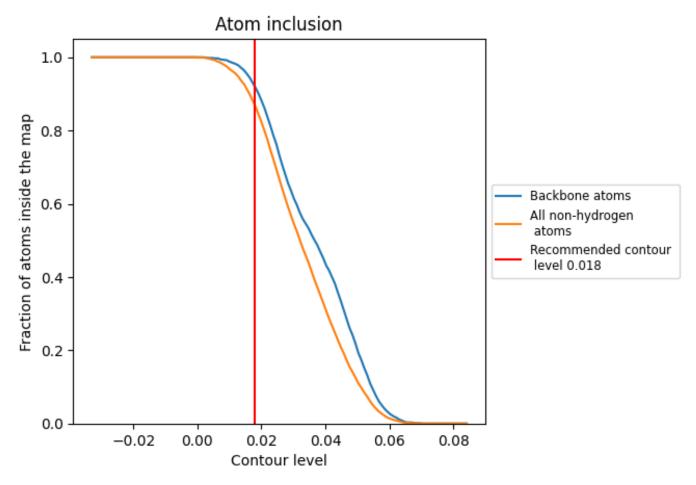

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.018 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.


9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.018).

9.4 Atom inclusion (i)

At the recommended contour level, 92% of all backbone atoms, 87% of all non-hydrogen atoms, are inside the map.

Map-model fit summary (i) 9.5

The table lists the average atom inclusion at the recommended contour level (0.018) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score	
All	0.8680	0.5320	1.0
A	0.8650	0.5620	
В	0.8410	0.5550	
С	0.8280	0.5410	
D	0.8530	0.5400	
E	0.8610	0.5530	
F	0.8570	0.5700	
G	0.8490	0.5510	
Н	0.8570	0.5400	
Ι	0.8930	0.5200	0.0 <
J	0.8900	0.5180	
S	0.5160	0.2510	

