

May 13, 2025 - 05:04 pm BST

PDB ID	:	$9H91 / pdb_{00009h91}$
EMDB ID	:	EMD-51947
Title	:	Cryo-EM structure of the Vibrio natrigens 50S ribosomal subunit in complex
		with the proline-rich antimicrobial peptide $Bac5(1-17)$.
Authors	:	Raulf, K.F.; Koller, T.O.; Beckert, B.; Morici, M.; Lepak, A.; Bange, G.;
		Wilson, D.N.
Deposited on	:	2024-10-29
Resolution	:	2.70 Å(reported)
This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry.
		We welcome your comments at unlidetion @mail www.db and

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev118
MolProbity	:	4-5-2 with Phenix2.0rc1
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.43.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	0	56	80%	14% 5%
2	1	56		7% •
3	2	44	89%	11%
4	3	64	• 84%	14% •
5	4	37	89%	11%
6	9	17	18%	12%
7	В	121	6 4% 30%	7%

Mol	Chain	Length	Quality of chain	
8	С	274	86%	13% •
9	D	209	89%	11%
10	Ε	200	89%	10% •
11	G	177	8%	10% •
12	Η	150	2 6% • 73%	
13	J	142	80%	19% ·
14	Κ	123	85%	15% •
15	L	144	88%	12% •
16	М	136	• 85%	13% ••
17	Ν	126	83%	10% • 5%
18	О	117	90%	9% •
19	Р	117	• 81%	15% ••
20	Q	117	89%	9% ••
21	R	103	• 93%	5% •
22	\mathbf{S}	110	90%	9% •
23	Т	100	5% 85%	8% 7%
24	U	105	74%	16% • 9%
25	V	92	93%	5% •
26	W	85	• 82%	9% 8%
27	Х	78	83%	15% •
28	Y	63	8%	19% ·
29	Ζ	58	• 79%	21%
30	А	2721	• 66%	29% 5% •

2 Entry composition (i)

There are 32 unique types of molecules in this entry. The entry contains 83760 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
1	0	53	Total 415	C 250	N 88	O 76	S 1	0	0

• Molecule 2 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	1	54	Total	С	Ν	Ο	\mathbf{S}	0	0
2	T	04	440	281	83	74	2	0	0

• Molecule 3 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	44	Total 362	C 222	N 86	O 52	${ m S} { m 2}$	0	0

• Molecule 4 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	63	Total 502	C 320	N 102	0 77	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	4	37	Total 296	C 181	N 65	O 46	${S \over 4}$	0	0

• Molecule 6 is a protein called Cathelicidin-2.

Mol	Chain	Residues		Atom	ıs	AltConf	Trace	
6	9	17	Total 154	C 104	N 32	O 18	0	0

• Molecule 7 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
7	В	121	Total 2583	C 1153	N 464	0 845	Р 121	0	0

• Molecule 8 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		Ate	AltConf	Trace			
8	С	272	Total 2093	C 1294	N 426	0 367	S 6	0	0

• Molecule 9 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	D	209	Total 1570	C 978	N 292	O 294	S 6	0	0

• Molecule 10 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	Е	200	Total 1535	C 963	N 277	O 289	S 6	0	0

• Molecule 11 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	G	176	Total 1312	C 825	N 238	0 247	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 12 is a protein called Large ribosomal subunit protein bL9.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
12	Н	40	Total 293	C 187	N 51	O 53	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	J	142	Total 1124	C 719	N 202	0 199	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	K	123	Total 947	C 591	N 183	O 166	${f S}$ 7	0	0

• Molecule 15 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	L	143	Total 1034	С 644	N 200	0 189	S 1	0	0

• Molecule 16 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	М	135	Total 1084	C 689	N 212	0 179	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 17 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Ν	120	Total 955	C 594	N 194	0 163	$\frac{S}{4}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
18	О	116	Total 880	C 545	N 178	O 157	0	0

• Molecule 19 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	Р	114	Total 907	$ m C \ 566$	N 175	O 165	S 1	0	0

• Molecule 20 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues	Atoms				AltConf	Trace
20	Q	116	Total 938	C 597	N 191	O 150	0	0

• Molecule 21 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues	Atoms					AltConf	Trace
21	R	103	Total 812	C 510	N 156	0 145	S 1	0	0

• Molecule 22 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues	Atoms					AltConf	Trace
22	S	110	Total 852	C 530	N 162	0 157	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues	Atoms					AltConf	Trace
23	Т	93	Total 732	C 462	N 134	0 134	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 24 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues	Atoms				AltConf	Trace
24	U	96	Total 725	C 456	N 136	O 133	0	0

• Molecule 25 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues	Atoms					AltConf	Trace
25	V	92	Total 730	C 466	N 131	O 130	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues	Atoms				AltConf	Trace
26	W	78	Total 598	C 371	N 118	O 109	0	0

• Molecule 27 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	Х	77	Total 624	C 384	N 132	0 105	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues	Atoms					AltConf	Trace
28	Y	62	Total 493	C 302	N 96	O 93	${ m S} { m 2}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues	Atoms					AltConf	Trace
29	Z	58	Total	С	Ν	0	S	0	0
25		00	458	289	84	81	4		0

• Molecule 30 is a RNA chain called 23S ribosomal RNA.

Mol	Chain	Residues			AltConf	Trace			
30	А	2718	Total 58293	C 26012	N 10670	O 18893	Р 2718	0	0

• Molecule 31 is ZINC ION (CCD ID: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
31	4	1	Total Zn 1 1	0

• Molecule 32 is water.

Mol	Chain	Residues	Atoms	AltConf
32	9	13	Total O 13 13	0
32	A	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L32

• Molecule 18: 50S ribosomal protein L18 Chain O: 90% 9% • Molecule 19: 50S ribosomal protein L19 Chain P: 81% 15% • Molecule 20: 50S ribosomal protein L20 Chain Q: 89% 9% • • MET 058 K53 R54 • Molecule 21: 50S ribosomal protein L21 Chain R: 93% 5%• • Molecule 22: 50S ribosomal protein L22 Chain S: 90% 9% • • Molecule 23: 50S ribosomal protein L23 5% Chain T: 85% 8% 7% . . ASP PHE VAL GLY GLY ALA G71 G71 B73 • Molecule 24: 50S ribosomal protein L24 Chain U: 74% 16% 9% •

A125 A126 A126 A127 A127 A126 A137 A137 A137 A137 A146 A146 A146 A146 A146 A146 A146 A146
C247 C247 C247 C247 C247 A263 A263 A264 A264 C261 V265 A264 A277 A277 A277 A281 A277 A281 A286 A286 A288 A288 A288 A288 A288 A288 A288 A288 A288 A288 A288 A288 A301 A288 A302 A288 A303 G288 A333 G384 A365 A365 A365 </td
C359 C359 C356 C356 C356 C356 C374 C377 C375 C377 C377 C377 C377 C377 C377 C377 C377 C377 C377 C377 C377 C376 C377 C336 A390 A390 A391 A390 A392 A390 A390 A390 A390 A390 A390 A390 A424 A401 A424 C409 C435 C436 C435 C436 C445 C436 C445 C445 C446 C446 C446 </td
6482 6483 6487 6487 6487 6487 6487 6485 6485 6485 6485 6485 6485 6485 6485
G565 G567 G567 G567 G567 G568 G571 G573 G574 A575 G574 G574 G574 G574 G575 G593 G594 G606 G594 G606 G605 G606 G636 G606 G636 G606 G636 G636 G636 G636 G645 G636 G645 G636 G646 G636 G636 G636 G645 G636 G636 G636 G637 G636 G636 </td
C7 06 C7 12 C7 13 C7 13 C7 13 C7 13 C7 13 C7 13 C7 13 C7 14 C7 14
A808 A809 A804 A804 A804 A814 U815 U815 A814 A814 A814 A814 A814 A814 A814 A814
6942 1943 1943 4947 4947 4947 4947 6949 6957 6956 6956 6956 6956 6956 6956 6956 6956 6956 6956 6956 6956 6956 6957 6956 6957 6956 6957 6956 6957 6957 6958 6977 6957 6958 6977 6977 6977 6977 6977 6977 6977 6977 6977 6977 6977 6977 6977 6971 6971 61013
U1020 1027 1027 1027 1027 1026 1026 1026 1026 1026 1026 1026 1026 1026 1026 1026 1026 1110 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1113 1114 1113 1114 1115 1114 1115 1116 1116 1116 1116 1116 1116 1116 1116
H1208 A1228 A1228 G1233 G1233 G1233 G1234 G1235 G1235 G1243 G1255 G1255 G1243 G1255 G1243 G1255 G1255 A1270 A1256 A1270 A1256 A1256 A1270 A1256 A1270 A1286 A1286 A1286 A1286 A1286 A1310 A1310 A1311 A1312 C1333 C1333 C1333
U1336 U1336 C1341 C1342 A1361 A1361 A1365 A1365 C1364 A1365 C1365 C1356 C1356 A1367 C1355 C1356 A1367 C1355 C1356 A1367 C1355 C1356 A1367 C1355 C1356 C1368 C1408 C
C1 445 U1 451 U1 451 U1 451 U1 456 U1 451 U1 465 U1 481 U1 481 U1 487 U1 487 U1 487 U1 493 U1 515 U1 515 U1 515 U1 525 U1 525 U1 525 U1 525 U1 526 U1
Q1553 Q1553 A1555 A1555 A1555 A1555 Q1571 4 U1 577 4 A1 569 41 563 A1 563 41 563
01660 01661 01663 A1663 01678 01678 01678 01669 01669 01696 01696 01704 01704 01704 01705 01714 01713 01714 01714 01712 01714 01714 01714 01714 01714 01714 01714 01712 01723 01724 01725 01726 01761 01762 01763 01764 01765 01766 01768 01768 01782 01782 01783 01784 01785 01786 01788 01788 01788 01788

111 780	C1790	61/91	C1800	A1813	C1817	U1818	A1831	A1837		G1841 A1842	01843	0 0 0 0	G1846	U1854	U1855	C1856	G1857	G1858	G1864	C1865	U1866 C1867	U1868	U1869 C1970	0 IOTD	A1875	A 18/ O	U1884	A1885 A1886		C1891	G1892 C1893	C1894	C1895	G1896	U1897	A1898	A1899	U1901	A1902	U1903	A1904	C1906
G1907	G1908	C1910	A1914	G1915 C1016	U1917	A1918 61919		A1922 A1923	A1924	U1925	01926 C1927	C1928	U1929 111030	000010	G1935	A1938		U1941	G1945	A1946	010111	01949 G1950	C1951	A1952	G1954	A1955 A1956	U1957	G1958	G1966	A1967 U1968		01976 U1977	G1978	019/9 C1980	U1981	C1982	COATO	C1987	<mark>G1990</mark>	A1991	•	
U1 997	A2000	A2005	A2006 A2007	U2008 C2009	G2010	U2014	G2015	A2016 A2017	G2018	A2019		A2023	G2024 U2025		C2029	G2034	<mark>G2035</mark>	C2036 112037	004	A2040	C2041 G2042	G2043	A2044 A2045	A2046	G2047	01074	U2054	42056 A2056	A2057	U2065	A2066	U2072	620/3	A2076	40081	C2082		U2085	C2088	C2089		
c2090	U2091	U2172	G2173	U21/14 U2175	G2176	1177	A2184	U2189	G2190	10107	A2198		G2209 G2210	A2211	C 1000	01775	U2219	G2220	U2222	G2223	67.7.74	U2231	G2232 ∆2233	C2234	U2235 C2236	G2237	2014 E	C2240 C2247	U2248	A2253	A2254	G2257	02258 A2259	A2260	10000	42264 A2264		G2268 C2269	62220	42273 A2273	-	
U2277	G2279	G2280 C2281	U2282 A2283	A2284 U2285		U2291	G2300	U2301	U2306	C0311	C2312	A2313	A2314 U2315		A2319	42320 A2321		C2333	G2335		A2340	G2343	42347		G2 <mark>3</mark> 57 117358	G2359	C2360	42301 A2362	CORE		G2369 U2370	C2371	A2372 U2373		G2377	C2381	G2382	0.2388		A2392		
A2393	<mark>G2399</mark>	C2402	C2403 A2404	U2405	C2410	A2411 A2412	C2413	G2414 G2415	A2416	U2417	A2421		U2427	G2432	G2433	N2404	C2438	A2439	C2448	C2449	G2451 C2451	C2452	C2453	G2456	47467	70170	G2467	62469 C2469	00476	U2477	G2480	G2481	C2482 A2483	C2484	C2485 112486	C2487	G2488	A2489 U2490	62491 117492	40440		
		A2502 C2503	A2504 U2505	U2508	G2509	G2510 G2511		G2515 A2516		U2519	G2521 G2521	G2522	U2523	A2533	U2534	G2536 G2536		U2540	U2547		A2550 A2551	A2552	G2553	G2556	U2557 A7558	C2559	G2560	TOCZO	U2566 C2567	G2568	U2571	U2572	U2582		A2586 C2587	A2588		U2595	U2599	A2600		
U2601	G2604	C2605	G2609	U2614 U2615		A2621 U2622		A2627	G2 <mark>630</mark>	G2631 ຕາຄາງ	U2633		A2640 G2641	U2642		62647 G2647		G2650	A2665	C2666	U2673	G2674	U2675 112676	C2677	G2678 C2679		U2699		G2708	A2712	c2716	G2717	67/18	G2730	C2731	G2733	A2734	A2735 A2736	G2737	-		
C2741	A2743	A 27 44	G2747	A2750 A2751	G2752	C2753	G2763	A2764 U2765	G2766	A2767	C2775	U2776	<u>62777</u> A2778	U2779	A2780	117783	117784	A2785	A2786	U2793		G2797 G2798	G2799		G2805	U2806	A 2001	U2811 A2812	71074	G2817 112818	U2819	G2820 A2821		G2828 G2829	G2830	U2831	62832 U2833	G2834	02835 A2836	A2837		
G2838 C7830		G2843	G2853 A2854	G2855 C2856		A2859 C2860		A2865	A2869	U2870 112871	G2872	C2873	C2874	A2879		000070																										

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	294068	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.0	Depositor
Minimum defocus (nm)	700	Depositor
Maximum defocus (nm)	1200	Depositor
Magnification	Not provided	
Image detector	FEI FALCON II $(4k \ge 4k)$	Depositor
Maximum map value	0.600	Depositor
Minimum map value	-0.304	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.013	Depositor
Recommended contour level	0.055	Depositor
Map size (Å)	441.376, 441.376, 441.376	wwPDB
Map dimensions	416, 416, 416	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.061, 1.061, 1.061	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	nd lengths	Bond angles				
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5			
1	0	0.78	0/419	1.04	1/559~(0.2%)			
2	1	0.71	0/448	1.03	0/594			
3	2	0.83	0/365	0.96	0/478			
4	3	0.88	0/510	1.01	0/677			
5	4	0.84	0/297	0.98	0/389			
6	9	0.73	0/163	1.03	0/223			
7	В	0.58	0/2888	1.08	18/4498~(0.4%)			
8	С	0.83	1/2134~(0.0%)	0.99	2/2874~(0.1%)			
9	D	0.75	0/1591	0.99	1/2139~(0.0%)			
10	Е	0.70	0/1554	1.01	2/2093~(0.1%)			
11	G	0.62	0/1330	0.95	0/1798			
12	Н	0.60	0/295	0.95	0/396			
13	J	0.78	0/1147	0.98	0/1544			
14	K	0.73	0/957	1.02	1/1283~(0.1%)			
15	L	0.81	0/1042	1.01	1/1389~(0.1%)			
16	М	0.75	0/1104	0.99	1/1475~(0.1%)			
17	N	0.80	0/969	0.99	0/1297			
18	0	0.71	0/889	1.03	1/1193~(0.1%)			
19	Р	0.80	2/917~(0.2%)	0.93	1/1225~(0.1%)			
20	Q	0.83	0/952	1.06	1/1268~(0.1%)			
21	R	0.71	0/823	0.93	0/1100			
22	S	0.77	0/860	0.94	0/1153			
23	Т	0.62	0/736	0.91	0/980			
24	U	0.63	0/729	1.00	0/968			
25	V	0.69	0/744	0.95	0/1000			
26	W	0.82	0/605	0.97	0/803			
27	Х	0.69	0/632	1.00	0/843			
28	Y	0.58	0/494	1.06	0/660			
29	Z	0.73	0/463	0.95	1/620~(0.2%)			
30	А	0.65	0/65271	1.12	388/101794~(0.4%)			
All	All	0.67	3/91328~(0.0%)	1.09	419/137313 (0.3%)			

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	0	0	3
2	1	0	1
3	2	0	1
4	3	0	2
5	4	0	1
6	9	0	1
8	С	0	9
9	D	0	1
10	Е	0	2
11	G	0	3
13	J	0	2
14	Κ	0	4
15	L	0	3
16	М	0	5
17	Ν	0	1
18	0	0	2
19	Р	0	5
20	Q	0	4
21	R	0	2
22	S	0	2
24	U	0	1
25	V	0	1
26	W	0	1
27	Х	0	1
28	Y	0	2
29	Ζ	0	1
30	А	0	13
All	All	0	74

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
19	Р	55	HIS	CG-CD2	-6.94	1.28	1.35
19	Р	20	ALA	CA-CB	-6.46	1.46	1.53
8	С	52	HIS	CG-CD2	-5.91	1.29	1.35

All (419) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	1784	С	O3'-P-O5'	-13.19	84.22	104.00
30	А	2873	С	O3'-P-O5'	-12.00	85.99	104.00
30	А	674	А	O3'-P-O5'	-10.55	88.17	104.00
30	А	2483	А	O3'-P-O5'	10.23	119.35	104.00
30	А	751	U	O3'-P-O5'	-10.05	88.93	104.00
30	А	759	G	O3'-P-O5'	-10.01	88.98	104.00
30	А	2184	А	O3'-P-O5'	-9.63	89.55	104.00
30	А	321	G	O3'-P-O5'	-9.26	90.11	104.00
7	В	16	G	O3'-P-O5'	-9.22	90.17	104.00
30	А	1123	G	O3'-P-O5'	-9.07	90.40	104.00
30	А	2486	U	O3'-P-O5'	-9.01	90.49	104.00
30	А	202	А	O3'-P-O5'	-8.74	90.88	104.00
30	А	797	G	O3'-P-O5'	-8.64	91.03	104.00
30	А	1584	А	O3'-P-O5'	-8.62	91.07	104.00
30	А	2484	С	C3'-C2'-O2'	8.59	123.59	110.70
30	А	2764	А	O3'-P-O5'	-8.49	91.26	104.00
30	А	397	G	O3'-P-O5'	-8.49	91.27	104.00
30	А	1926	U	C2'-C3'-O3'	8.45	122.18	109.50
30	А	2438	С	O3'-P-O5'	-8.33	91.51	104.00
30	А	566	G	O3'-P-O5'	-8.32	91.52	104.00
30	А	1818	U	C4'-C3'-O3'	-8.27	100.59	113.00
30	А	2020	U	O3'-P-O5'	-8.25	91.63	104.00
30	А	2747	G	O3'-P-O5'	-8.17	91.75	104.00
30	А	1658	А	O3'-P-O5'	-8.11	91.83	104.00
30	А	1662	А	O3'-P-O5'	-8.10	91.85	104.00
30	А	493	U	O3'-P-O5'	-8.08	91.88	104.00
30	А	2622	U	O3'-P-O5'	-8.08	91.88	104.00
30	А	1312	А	O3'-P-O5'	-7.96	92.05	104.00
30	А	814	А	O3'-P-O5'	-7.93	92.11	104.00
30	А	665	А	O3'-P-O5'	-7.92	92.13	104.00
30	А	541	U	O3'-P-O5'	-7.88	92.19	104.00
30	А	1377	А	O3'-P-O5'	-7.87	92.20	104.00
30	А	379	U	O3'-P-O5'	-7.86	92.22	104.00
30	А	2510	G	O3'-P-O5'	-7.77	92.34	104.00
30	А	2014	U	O3'-P-O5'	-7.76	92.36	104.00
30	А	568	G	O3'-P-O5'	-7.74	92.39	104.00
30	А	574	G	O3'-P-O5'	-7.67	92.49	104.00
30	А	2614	U	O3'-P-O5'	-7.67	92.50	104.00
30	А	750	А	C4'-C3'-O3'	-7.55	101.68	113.00
30	А	513	G	O3'-P-O5'	-7.54	92.69	104.00
30	А	2750	А	O3'-P-O5'	-7.52	92.71	104.00
8	С	10	PRO	N-CA-C	-7.50	99.42	111.19
30	А	2023	А	O3'-P-O5'	-7.47	92.79	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	1634	U	O3'-P-O5'	-7.42	92.87	104.00
30	А	805	С	O3'-P-O5'	-7.40	92.90	104.00
30	А	2248	U	O3'-P-O5'	-7.40	92.90	104.00
30	А	2258	U	C2'-C3'-O3'	-7.40	102.60	113.70
30	А	749	G	O3'-P-O5'	-7.40	92.90	104.00
30	А	13	A	O3'-P-O5'	-7.38	92.92	104.00
30	А	2076	A	O3'-P-O5'	-7.38	92.93	104.00
30	А	1967	A	C2'-C3'-O3'	-7.38	102.64	113.70
30	А	1653	G	O3'-P-O5'	-7.37	92.94	104.00
30	А	895	U	O3'-P-O5'	-7.33	93.00	104.00
30	А	1980	C	O3'-P-O5'	-7.33	93.01	104.00
30	А	1650	A	C4'-C3'-O3'	-7.33	102.01	113.00
30	А	124	G	O3'-P-O5'	-7.32	93.03	104.00
30	А	2369	G	O3'-P-O5'	-7.29	93.06	104.00
30	А	2237	G	C3'-C2'-O2'	7.29	121.63	110.70
30	А	2415	G	O3'-P-O5'	-7.28	93.08	104.00
30	А	999	U	O3'-P-O5'	-7.28	93.09	104.00
30	А	1585	U	O3'-P-O5'	-7.27	93.10	104.00
30	А	1282	C	O3'-P-O5'	-7.26	93.10	104.00
30	А	560	U	O3'-P-O5'	-7.25	93.12	104.00
30	А	1643	U	O3'-P-O5'	-7.20	93.20	104.00
30	А	1351	A	O3'-P-O5'	-7.19	93.22	104.00
30	А	848	G	O3'-P-O5'	-7.18	93.23	104.00
30	А	2246	C	O3'-P-O5'	-7.17	93.25	104.00
30	А	193	A	C4'-C3'-O3'	-7.16	102.26	113.00
30	А	960	G	O3'-P-O5'	-7.16	93.26	104.00
30	А	72	U	O3'-P-O5'	-7.13	93.30	104.00
30	А	398	G	O3'-P-O5'	-7.13	93.30	104.00
30	А	770	A	O3'-P-O5'	-7.12	93.32	104.00
30	А	173	G	O3'-P-O5'	-7.11	93.34	104.00
30	А	621	A	O3'-P-O5'	-7.10	93.34	104.00
30	А	1140	C	O3'-P-O5'	-7.08	93.37	104.00
30	А	2483	A	C2'-C3'-O3'	7.08	120.12	109.50
30	А	1434	G	O3'-P-O5'	-7.04	93.44	104.00
30	А	2007	A	O3'-P-O5'	-7.03	93.45	104.00
30	А	957	G	O3'-P-O5'	-7.02	93.47	104.00
30	А	1169	G	O3'-P-O5'	-7.02	93.48	104.00
30	A	982	C	O3'-P-O5'	-6.98	93.53	104.00
30	А	73	A	O3'-P-O5'	-6.98	93.53	104.00
30	А	187	G	O3'-P-O5'	-6.98	93.53	104.00
30	A	2054	U	O3'-P-O5'	-6.98	93.53	104.00
30	А	2453	C	O3'-P-O5'	-6.97	93.54	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	54	G	O3'-P-O5'	-6.95	93.58	104.00
7	В	50	С	O3'-P-O5'	-6.94	93.59	104.00
30	А	9	G	O3'-P-O5'	-6.93	93.61	104.00
30	А	2081	A	O3'-P-O5'	-6.89	93.66	104.00
30	А	1439	G	O3'-P-O5'	-6.86	93.71	104.00
30	А	1655	А	C2'-C3'-O3'	-6.86	103.41	113.70
30	А	1842	А	O3'-P-O5'	-6.86	93.72	104.00
30	А	386	U	O3'-P-O5'	-6.85	93.72	104.00
30	А	2571	U	O3'-P-O5'	-6.85	93.73	104.00
30	А	2750	А	C2'-C3'-O3'	-6.85	103.43	113.70
30	А	2009	С	C4'-C3'-O3'	-6.84	102.73	113.00
30	А	2767	А	O3'-P-O5'	-6.83	93.76	104.00
30	А	2763	G	O3'-P-O5'	-6.80	93.80	104.00
30	А	928	G	C2'-C3'-O3'	-6.79	103.51	113.70
30	А	1660	G	O3'-P-O5'	-6.78	93.83	104.00
30	А	2523	U	O3'-P-O5'	-6.77	93.84	104.00
30	А	992	U	C4'-C3'-O3'	-6.77	102.85	113.00
30	А	493	U	C4'-C3'-O3'	-6.76	102.85	113.00
30	А	2817	G	O3'-P-O5'	-6.73	93.91	104.00
7	В	78	U	O3'-P-O5'	-6.70	93.95	104.00
30	А	990	G	O3'-P-O5'	-6.68	93.98	104.00
30	А	2282	U	O3'-P-O5'	-6.68	93.97	104.00
30	А	499	C	O3'-P-O5'	-6.66	94.00	104.00
30	А	810	A	O3'-P-O5'	-6.66	94.01	104.00
30	А	1551	C	O3'-P-O5'	-6.64	94.04	104.00
30	А	1012	G	C3'-C2'-O2'	-6.62	104.67	114.60
30	А	483	G	O3'-P-O5'	-6.62	94.07	104.00
30	А	1441	U	C2'-C3'-O3'	-6.61	103.79	113.70
30	А	1431	С	O3'-P-O5'	-6.60	94.10	104.00
30	А	1550	C	O3'-P-O5'	-6.59	94.11	104.00
30	А	1749	U	O3'-P-O5'	-6.59	94.11	104.00
30	A	1018	G	O3'-P-O5'	-6.57	94.14	104.00
30	А	2236	G	O3'-P-O5'	-6.57	94.14	104.00
30	А	266	C	O3'-P-O5'	-6.57	94.15	104.00
30	А	1637	G	O3'-P-O5'	-6.55	94.18	104.00
30	А	2536	G	C4'-C3'-O3'	-6.55	103.18	113.00
7	В	84	G	O3'-P-O5'	-6.54	94.19	104.00
30	А	2044	A	O3'-P-O5'	-6.53	94.21	104.00
16	М	14	THR	CA-CB-OG1	-6.52	99.82	109.60
30	A	2497	U	O3'-P-O5'	-6.49	94.27	104.00
30	A	952	C	O3'-P-O5'	-6.47	94.29	104.00
30	A	1596	A	O3'-P-O5'	-6.46	94.31	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	1182	U	O3'-P-O5'	-6.45	94.33	104.00
7	В	76	G	O3'-P-O5'	-6.43	94.35	104.00
30	А	993	С	C4'-C3'-O3'	-6.41	103.39	113.00
30	А	2804	С	O3'-P-O5'	-6.41	94.39	104.00
30	А	2600	A	O3'-P-O5'	-6.39	94.41	104.00
30	А	2521	G	O3'-P-O5'	-6.39	94.42	104.00
30	А	1233	U	C4'-C3'-O3'	-6.37	103.44	113.00
30	А	2609	G	O3'-P-O5'	-6.36	94.46	104.00
30	А	606	G	O3'-P-O5'	-6.35	94.47	104.00
30	А	2586	A	O3'-P-O5'	-6.35	94.48	104.00
30	А	265	C	O3'-P-O5'	-6.34	94.49	104.00
30	А	1869	U	O3'-P-O5'	-6.33	94.50	104.00
30	А	359	G	O3'-P-O5'	-6.33	94.50	104.00
30	А	733	U	O3'-P-O5'	-6.33	94.51	104.00
30	A	2209	G	O3'-P-O5'	-6.31	94.54	104.00
7	В	91	С	O3'-P-O5'	-6.30	94.54	104.00
30	A	1583	A	C4'-C3'-O3'	-6.30	103.54	113.00
30	A	904	С	C4'-C3'-O3'	-6.30	103.55	113.00
30	А	1606	G	O3'-P-O5'	-6.30	94.55	104.00
30	А	2335	G	O3'-P-O5'	-6.29	94.56	104.00
30	А	515	A	C4'-C3'-O3'	-6.29	103.57	113.00
30	A	2505	U	O3'-P-O5'	-6.29	94.57	104.00
30	A	1987	С	O3'-P-O5'	-6.28	94.58	104.00
30	А	2741	С	O3'-P-O5'	-6.28	94.59	104.00
30	A	532	G	O3'-P-O5'	-6.27	94.60	104.00
30	A	374	С	C4'-C3'-O3'	-6.25	103.62	113.00
30	A	2040	A	O3'-P-O5'	-6.25	94.62	104.00
30	A	2482	С	C4'-C3'-O3'	-6.24	103.63	113.00
30	А	781	A	O3'-P-O5'	-6.23	94.65	104.00
30	A	994	С	O3'-P-O5'	-6.23	94.66	104.00
30	A	1110	С	O3'-P-O5'	-6.23	94.66	104.00
7	В	25	A	O3'-P-O5'	-6.22	94.67	104.00
30	А	1641	A	O3'-P-O5'	-6.20	94.69	104.00
30	А	2699	U	O3'-P-O5'	-6.19	94.72	104.00
30	А	736	U	O3'-P-O5'	-6.16	94.76	104.00
30	А	1761	U	O3'-P-O5'	-6.16	94.76	104.00
30	A	2257	G	O3'-P-O5'	-6.14	94.79	104.00
9	D	148	GLN	CB-CA-C	-6.13	102.63	112.07
30	A	340	A	$O3'-P-\overline{O5'}$	-6.13	94.80	104.00
30	A	288	A	O3'-P-O5'	-6.13	94.81	104.00
30	A	1359	U	O3'-P-O5'	-6.09	94.86	104.00
30	А	943	U	O3'-P-O5'	-6.07	94.90	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	1843	U	O3'-P-O5'	-6.07	94.90	104.00
30	А	1762	U	C4'-C3'-O3'	-6.07	103.90	113.00
30	А	564	A	O3'-P-O5'	-6.06	94.91	104.00
10	Е	82	VAL	N-CA-CB	-6.05	104.11	111.00
30	А	2673	U	C4'-C3'-O3'	-6.04	103.93	113.00
30	А	959	G	O3'-P-O5'	-6.04	94.95	104.00
30	А	2566	U	C4'-C3'-O3'	-6.03	103.96	113.00
30	А	25	U	O3'-P-O5'	-6.02	94.97	104.00
30	А	2502	A	O3'-P-O5'	-6.00	95.00	104.00
30	А	1310	U	C4'-C3'-O3'	-5.99	104.02	113.00
30	А	1138	A	O3'-P-O5'	-5.98	95.03	104.00
30	А	434	С	C4'-C3'-O3'	-5.97	104.04	113.00
30	А	857	U	O3'-P-O5'	-5.97	95.04	104.00
30	А	2057	А	C2'-C3'-O3'	-5.96	104.75	113.70
30	А	2556	G	O3'-P-O5'	-5.95	95.08	104.00
30	А	1030	С	O3'-P-O5'	-5.95	95.08	104.00
30	А	2831	U	O3'-P-O5'	-5.92	95.12	104.00
30	А	2865	А	O3'-P-O5'	-5.91	95.13	104.00
30	А	849	U	O3'-P-O5'	-5.91	95.14	104.00
30	А	1208	U	O3'-P-O5'	-5.90	95.15	104.00
30	А	2065	U	O3'-P-O5'	-5.89	95.16	104.00
30	А	238	А	O3'-P-O5'	-5.89	95.17	104.00
30	А	2572	U	O3'-P-O5'	-5.89	95.17	104.00
30	А	2285	U	O3'-P-O5'	-5.88	95.18	104.00
30	А	458	G	O3'-P-O5'	-5.87	95.19	104.00
30	А	724	А	C2'-C3'-O3'	-5.87	104.90	113.70
30	А	562	U	O3'-P-O5'	-5.87	95.20	104.00
30	А	773	G	O3'-P-O5'	-5.87	95.20	104.00
30	А	1228	А	C1'-C2'-O2'	5.86	117.18	108.40
30	А	2752	G	O3'-P-O5'	-5.85	95.22	104.00
7	В	47	А	O3'-P-O5'	-5.85	95.22	104.00
30	А	1363	U	O3'-P-O5'	-5.84	95.23	104.00
30	А	2066	А	O3'-P-O5'	-5.84	95.24	104.00
30	А	517	А	O3'-P-O5'	-5.83	95.25	104.00
30	А	739	А	O3'-P-O5'	-5.83	95.25	104.00
30	А	1129	А	O3'-P-O5'	-5.83	95.26	104.00
30	А	2343	G	C2'-C3'-O3'	-5.82	104.97	113.70
30	А	977	G	O3'-P-O5'	-5.82	95.27	104.00
30	А	1271	A	O3'-P-O5'	-5.82	95.28	104.00
30	А	2708	G	C4'-C3'-O3'	-5.81	104.28	113.00
30	А	1333	С	O3'-P-O5'	-5.81	95.29	104.00
30	А	760	G	O3'-P-O5'	-5.80	95.30	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	1800	С	O3'-P-O5'	-5.80	95.30	104.00
30	А	2360	С	O3'-P-O5'	-5.79	95.31	104.00
14	К	48	PRO	N-CA-C	5.79	121.58	113.53
30	А	1437	А	O3'-P-O5'	-5.79	95.31	104.00
30	А	2806	U	C4'-C3'-O3'	-5.79	104.32	113.00
30	А	2832	G	C2'-C3'-O3'	-5.79	105.02	113.70
30	А	1991	А	C2'-C3'-O3'	-5.78	105.02	113.70
30	А	655	А	O3'-P-O5'	-5.78	95.33	104.00
30	А	2234	С	O3'-P-O5'	-5.78	95.34	104.00
7	В	4	U	O3'-P-O5'	-5.77	95.34	104.00
30	А	594	G	O3'-P-O5'	-5.74	95.39	104.00
30	А	2393	А	C4'-C3'-O3'	-5.72	104.42	113.00
30	А	1597	С	C4'-C3'-O3'	-5.72	104.42	113.00
30	А	1613	G	O3'-P-O5'	-5.72	95.42	104.00
30	А	1990	G	O3'-P-O5'	-5.72	95.42	104.00
30	А	2558	А	O3'-P-O5'	-5.71	95.44	104.00
30	А	148	U	O3'-P-O5'	-5.70	95.45	104.00
30	А	1489	U	O3'-P-O5'	-5.70	95.45	104.00
30	А	2439	А	O3'-P-O5'	-5.69	95.46	104.00
7	В	95	А	O3'-P-O5'	-5.69	95.47	104.00
30	А	1357	А	O3'-P-O5'	-5.68	95.47	104.00
30	А	495	G	O3'-P-O5'	-5.68	95.48	104.00
30	А	1688	G	O3'-P-O5'	-5.68	95.48	104.00
30	А	2547	U	O3'-P-O5'	-5.68	95.48	104.00
30	А	228	G	O3'-P-O5'	-5.67	95.50	104.00
30	А	2047	G	O3'-P-O5'	-5.67	95.50	104.00
30	А	2403	С	O3'-P-O5'	-5.66	95.50	104.00
30	А	908	U	O3'-P-O5'	-5.66	95.51	104.00
30	А	1366	G	O3'-P-O5'	-5.66	95.51	104.00
30	А	1955	A	O3'-P-O5'	-5.66	95.51	104.00
30	А	555	U	C4'-C3'-O3'	-5.66	104.51	113.00
30	А	2716	C	O3'-P-O5'	-5.66	95.52	104.00
30	А	400	G	C3'-C2'-O2'	-5.66	106.12	114.60
30	А	811	G	O3'-P-O5'	-5.66	95.52	104.00
8	С	128	THR	CA-CB-OG1	-5.65	101.12	109.60
15	L	5	THR	CA-CB-OG1	-5.65	101.13	109.60
30	А	1003	U	O3'-P-O5'	-5.64	95.53	104.00
30	A	1663	A	C4'-C3'-O3'	-5.63	$104.5\overline{5}$	113.00
30	A	1511	U	O3'-P-O5'	-5.63	95.56	104.00
30	A	2402	C	O3'-P-O5'	-5.62	95.56	104.00
30	A	938	G	$O3'-P-\overline{O5'}$	-5.62	95.57	104.00
30	А	462	G	O3'-P-O5'	-5.62	95.57	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	737	G	C1'-O4'-C4'	-5.62	104.28	109.90
30	А	185	G	O3'-P-O5'	-5.61	95.59	104.00
30	А	743	U	O3'-P-O5'	-5.61	95.59	104.00
30	А	2044	A	C2'-C3'-O3'	-5.61	105.29	113.70
30	А	400	G	O3'-P-O5'	-5.60	95.60	104.00
30	А	1165	U	O3'-P-O5'	-5.59	95.62	104.00
30	А	749	G	OP1-P-O3'	5.57	124.70	108.00
30	А	2272	G	O3'-P-O5'	-5.56	95.66	104.00
30	А	1756	A	O3'-P-O5'	5.56	112.34	104.00
30	А	1635	G	O3'-P-O5'	-5.55	95.67	104.00
30	А	1366	G	C4'-C3'-O3'	-5.55	104.68	113.00
30	А	1563	С	O3'-P-O5'	-5.54	95.69	104.00
30	А	1612	G	O3'-P-O5'	-5.54	95.69	104.00
30	А	252	G	C2'-C3'-O3'	-5.53	105.40	113.70
30	А	2508	U	O3'-P-O5'	-5.53	95.70	104.00
30	А	1678	U	C4'-C3'-O3'	-5.53	104.71	113.00
30	А	653	A	C1'-C2'-O2'	5.52	116.68	108.40
30	А	1954	G	O3'-P-O5'	-5.52	95.72	104.00
30	А	15	G	O3'-P-O5'	-5.51	95.73	104.00
30	А	2365	G	O3'-P-O5'	-5.50	95.75	104.00
30	А	569	U	O3'-P-O5'	-5.50	95.75	104.00
30	А	1956	A	C2'-C3'-O3'	5.49	117.73	109.50
30	А	466	A	O3'-P-O5'	-5.49	95.77	104.00
30	А	1661	C	C4'-C3'-O3'	-5.47	104.79	113.00
7	В	90	U	O3'-P-O5'	-5.47	95.80	104.00
30	А	1235	С	O3'-P-O5'	-5.47	95.80	104.00
30	А	1592	C	C4'-C3'-O3'	-5.46	104.80	113.00
30	А	1977	U	O3'-P-O5'	5.46	112.20	104.00
30	А	172	G	O3'-P-O5'	-5.46	95.81	104.00
30	А	858	G	O3'-P-O5'	-5.45	95.82	104.00
7	В	66	U	O3'-P-O5'	-5.45	95.82	104.00
30	А	2037	U	O3'-P-O5'	-5.44	95.84	104.00
30	А	1139	С	O3'-P-O5'	-5.44	95.85	104.00
30	А	1271	A	C2'-C3'-O3'	-5.44	105.55	113.70
30	А	650	U	C2'-C3'-O3'	-5.43	105.55	113.70
30	A	2731	C	O3'-P-O5'	-5.43	95.85	104.00
30	А	2805	G	O3'-P-O5'	-5.43	95.85	104.00
30	А	1035	A	O3'-P-O5'	-5.43	95.85	104.00
30	A	2627	A	C4'-C3'-C2'	-5.43	97.17	102.60
30	А	2468	A	O3'-P-O5'	-5.43	95.85	104.00
30	A	206	C	O3'-P-O5'	-5.43	95.86	104.00
30	А	525	G	C4'-C3'-C2'	-5.43	97.17	102.60

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	506	С	O3'-P-O5'	-5.42	95.86	104.00
30	А	1380	U	C1'-C2'-O2'	-5.42	103.66	111.80
30	А	1935	G	O3'-P-O5'	-5.42	95.88	104.00
30	А	27	G	O3'-P-O5'	-5.41	95.88	104.00
30	А	137	A	O3'-P-O5'	-5.41	95.88	104.00
30	А	1172	U	C4'-C3'-O3'	-5.41	104.88	113.00
30	А	752	G	O3'-P-O5'	-5.41	95.89	104.00
30	А	1780	U	O3'-P-O5'	-5.40	95.90	104.00
30	А	1980	С	C2'-C3'-O3'	-5.39	105.62	113.70
30	А	845	G	O3'-P-O5'	-5.39	95.92	104.00
30	А	2630	G	O3'-P-O5'	-5.38	95.92	104.00
30	А	2753	С	O3'-P-O5'	-5.38	95.92	104.00
30	А	26	G	C4'-C3'-O3'	-5.38	104.92	113.00
30	А	1555	A	C2'-C3'-O3'	-5.38	105.63	113.70
30	А	928	G	C4'-C3'-C2'	-5.38	97.22	102.60
30	А	288	А	C4'-C3'-O3'	-5.38	104.93	113.00
30	А	1846	G	O3'-P-O5'	-5.38	95.94	104.00
30	А	2008	U	C2'-C3'-O3'	5.37	117.55	109.50
30	А	211	A	O3'-P-O5'	-5.35	95.97	104.00
30	А	719	A	O3'-P-O5'	-5.34	95.99	104.00
30	А	817	U	C4'-C3'-O3'	-5.34	104.99	113.00
30	А	2515	G	O3'-P-O5'	-5.34	95.99	104.00
30	А	2511	G	O3'-P-O5'	-5.34	95.99	104.00
30	А	531	G	O3'-P-O5'	-5.33	96.00	104.00
30	А	844	G	O3'-P-O5'	-5.33	96.00	104.00
30	А	997	A	C4'-C3'-O3'	-5.33	105.00	113.00
30	А	2236	G	C2'-C3'-O3'	5.33	117.50	109.50
30	А	1774	С	C2'-C3'-O3'	-5.33	105.71	113.70
30	А	2056	А	C4'-C3'-C2'	-5.33	97.27	102.60
30	А	1272	А	O3'-P-O5'	-5.33	96.01	104.00
30	А	2010	G	C4'-C3'-O3'	-5.31	105.03	113.00
30	А	2582	U	C2'-C3'-O3'	-5.31	105.73	113.70
30	А	490	A	O3'-P-O5'	-5.31	96.04	104.00
30	А	2034	G	O3'-P-O5'	-5.31	96.04	104.00
30	А	1258	А	O3'-P-O5'	-5.31	96.04	104.00
30	А	616	A	O3'-P-O5'	-5.30	96.05	104.00
30	А	1125	G	C2'-C3'-O3'	-5.30	105.75	113.70
30	A	245	G	C4'-C3'-O3'	-5.30	105.05	113.00
30	А	435	G	03'-P-O5'	-5.29	96.06	104.00
30	A	1124	G	03'-P-O5'	-5.29	96.07	104.00
30	A	2417	U	O3'-P-O5'	-5.29	96.07	104.00
30	А	2819	U	O3'-P-O5'	-5.29	96.07	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	2519	U	O3'-P-O5'	-5.29	96.07	104.00
19	Р	24	THR	CA-CB-OG1	-5.28	101.67	109.60
30	А	1536	U	O3'-P-O5'	-5.28	96.08	104.00
7	В	7	G	O3'-P-O5'	-5.28	96.08	104.00
30	А	1997	U	C2'-C3'-O3'	-5.28	105.78	113.70
30	А	545	А	C2'-C3'-O3'	-5.28	105.79	113.70
30	А	1121	A	O3'-P-O5'	-5.27	96.09	104.00
30	А	2306	U	O3'-P-O5'	-5.26	96.10	104.00
7	В	13	A	O3'-P-O5'	-5.26	96.11	104.00
30	А	570	C	O3'-P-O5'	-5.26	96.11	104.00
30	А	999	U	C2'-C3'-O3'	5.26	117.39	109.50
30	А	1127	С	C4'-C3'-O3'	-5.26	105.11	113.00
30	А	967	А	C4'-C3'-C2'	-5.25	97.35	102.60
30	А	1362	А	O3'-P-O5'	-5.25	96.12	104.00
30	А	200	U	C4'-C3'-O3'	-5.24	105.14	113.00
30	А	1196	G	O3'-P-O5'	-5.23	96.15	104.00
30	А	2399	G	O3'-P-O5'	-5.23	96.16	104.00
30	А	986	С	O3'-P-O5'	-5.22	96.17	104.00
30	А	1420	G	O3'-P-O5'	-5.22	96.17	104.00
30	А	2006	А	C4'-C3'-O3'	-5.22	105.17	113.00
30	А	26	G	O3'-P-O5'	-5.21	96.18	104.00
30	А	2476	G	O3'-P-O5'	-5.21	96.18	104.00
30	А	188	А	O3'-P-O5'	-5.21	96.18	104.00
30	А	2223	G	C2'-C3'-O3'	-5.21	105.89	113.70
30	А	2412	А	O3'-P-O5'	-5.20	96.19	104.00
30	А	79	А	O3'-P-O5'	-5.20	96.20	104.00
30	А	1866	U	O3'-P-O5'	-5.19	96.22	104.00
30	А	2054	U	C2'-C3'-O3'	-5.18	105.93	113.70
7	В	93	С	O3'-P-O5'	-5.17	96.24	104.00
30	А	1652	G	O3'-P-O5'	-5.17	96.25	104.00
30	А	1553	G	O3'-P-O5'	-5.16	96.25	104.00
30	А	1644	С	C4'-C3'-O3'	-5.16	105.26	113.00
30	А	1248	G	O3'-P-O5'	-5.14	96.29	104.00
30	А	2836	А	O3'-P-O5'	-5.14	96.29	104.00
30	А	691	U	O3'-P-O5'	-5.14	96.29	104.00
1	0	19	ASP	CA-CB-CG	5.14	117.74	112.60
30	А	1445	С	O3'-P-O5'	-5.14	96.29	104.00
30	А	2854	A	O3'-P-O5'	-5.14	96.30	104.00
30	А	267	С	P-O5'-C5'	-5.13	113.20	120.90
30	А	2456	G	O3'-P-O5'	-5.13	96.30	104.00
30	А	2231	U	C4'-C3'-O3'	-5.13	105.30	113.00
30	А	964	G	C4'-C3'-O3'	-5.13	105.31	113.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	557	U	C4'-C3'-O3'	-5.13	105.31	113.00
30	А	52	A	O3'-P-O5'	-5.13	96.31	104.00
30	А	565	U	O3'-P-O5'	-5.12	96.33	104.00
30	А	1956	А	C4'-C3'-O3'	-5.12	101.73	109.40
30	А	358	С	O3'-P-O5'	-5.11	96.33	104.00
7	В	52	G	O3'-P-O5'	-5.11	96.34	104.00
30	А	454	G	O3'-P-O5'	-5.11	96.34	104.00
30	А	761	С	O3'-P-O5'	-5.11	96.34	104.00
7	В	108	A	C4'-C3'-O3'	-5.10	105.35	113.00
30	А	1178	A	O3'-P-O5'	-5.10	96.35	104.00
30	А	2869	A	C4'-C3'-O3'	-5.09	105.36	113.00
30	А	1528	U	O3'-P-O5'	-5.09	96.36	104.00
30	А	2432	G	O3'-P-O5'	-5.09	96.36	104.00
30	А	764	G	O3'-P-O5'	-5.09	96.37	104.00
30	А	567	G	O3'-P-O5'	-5.08	96.38	104.00
30	А	620	A	C2'-C3'-O3'	-5.08	106.08	113.70
30	А	1976	С	O3'-P-O5'	-5.08	96.37	104.00
10	Е	144	ASP	CA-CB-CG	5.08	117.68	112.60
30	А	2509	G	O3'-P-O5'	-5.08	96.38	104.00
7	В	22	U	O3'-P-O5'	-5.07	96.39	104.00
30	А	1691	A	O3'-P-O5'	-5.07	96.40	104.00
30	А	1884	U	O3'-P-O5'	-5.06	96.41	104.00
29	Z	34	THR	CA-CB-OG1	-5.05	102.02	109.60
30	А	522	G	O3'-P-O5'	-5.05	96.43	104.00
18	0	12	THR	CA-CB-OG1	-5.05	102.03	109.60
30	А	487	G	O3'-P-O5'	-5.05	96.43	104.00
20	Q	58	GLN	N-CA-CB	5.04	117.53	110.12
30	А	1930	U	O3'-P-O5'	-5.04	96.44	104.00
30	А	1556	A	C4'-C3'-O3'	-5.04	105.45	113.00
30	А	1147	G	O3'-P-O5'	-5.03	96.45	104.00
30	А	1647	G	O3'-P-O5'	-5.03	96.45	104.00
30	А	2833	U	C2'-C3'-O3'	-5.03	106.15	113.70
30	А	2197	U	O3'-P-O5'	-5.03	96.46	104.00
30	А	641	U	C2'-C3'-O3'	-5.01	106.18	113.70
30	А	127	А	C4'-C3'-O3'	-5.01	105.48	113.00
30	А	814	A	OP1-P-O3'	5.01	123.03	108.00
_30	А	1382	C	C4'-C3'-O3'	-5.01	105.48	113.00
30	А	1528	U	C2'-C3'-O3'	5.01	117.01	109.50
30	А	2561	С	C2'-C3'-O3'	-5.00	106.19	113.70
30	А	240	G	C3'-C2'-C1'	-5.00	96.50	101.50

There are no chirality outliers.

Mol	Chain	Res	Type	Group
1	0	12	ARG	Sidechain
1	0	48	ARG	Sidechain
1	0	9	ARG	Sidechain
2	1	6	ARG	Sidechain
3	2	35	ARG	Sidechain
4	3	12	ARG	Sidechain
4	3	40	ARG	Sidechain
5	4	19	ARG	Sidechain
6	9	3	ARG	Sidechain
30	А	1129	A	Sidechain
30	А	1308	G	Sidechain
30	А	1791	G	Sidechain
30	А	2550	A	Sidechain
30	А	27	G	Sidechain
30	А	2843	G	Sidechain
30	А	452	G	Sidechain
30	А	501	G	Sidechain
30	А	564	А	Sidechain
30	А	947	А	Sidechain
30	А	968	А	Sidechain
30	А	970	С	Sidechain
30	А	972	A	Sidechain
8	С	100	ARG	Sidechain
8	С	12	ARG	Sidechain
8	С	166	ARG	Sidechain
8	С	176	ARG	Sidechain
8	С	242	ARG	Sidechain
8	С	269	ARG	Sidechain
8	С	270	ARG	Sidechain
8	С	42	ARG	Sidechain
8	С	51	ARG	Sidechain
9	D	83	ARG	Sidechain
10	Е	66	ARG	Sidechain
10	Е	78	ARG	Sidechain
11	G	151	ARG	Sidechain
11	G	169	ARG	Sidechain
11	G	34	ARG	Sidechain
13	J	120	ARG	Sidechain
13	J	37	ARG	Sidechain
14	Κ	105	ARG	Sidechain
14	Κ	108	ARG	Sidechain
14	Κ	70	ARG	Sidechain

All (74) planarity outliers are listed below:

	J	1	I J	
Mol	Chain	Res	Type	Group
14	K	78	ARG	Sidechain
15	L	126	ARG	Sidechain
15	L	18	ARG	Sidechain
15	L	69	ARG	Sidechain
16	М	114	ARG	Sidechain
16	М	18	ARG	Sidechain
16	М	40	ARG	Sidechain
16	М	44	ARG	Sidechain
16	М	66	ARG	Sidechain
17	N	118	ARG	Sidechain
18	0	81	ARG	Sidechain
18	0	94	ARG	Sidechain
19	Р	100	ARG	Sidechain
19	Р	108	ARG	Sidechain
19	Р	36	ARG	Sidechain
19	Р	52	ARG	Sidechain
19	Р	88	ARG	Sidechain
20	Q	10	ARG	Sidechain
20	Q	50	ARG	Sidechain
20	Q	54	ARG	Sidechain
20	Q	63	ARG	Sidechain
21	R	68	ARG	Sidechain
21	R	90	ARG	Sidechain
22	S	92	ARG	Sidechain
22	S	99	ARG	Sidechain
24	U	6	ARG	Sidechain
25	V	78	ARG	Sidechain
26	W	21	ARG	Sidechain
27	Х	17	ARG	Sidechain
28	Y	29	ARG	Sidechain
28	Y	52	ARG	Sidechain
29	Ζ	29	ARG	Sidechain

Continued from previous page...

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	0	415	0	430	2	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	1	440	0	468	2	0
3	2	362	0	411	3	0
4	3	502	0	570	4	0
5	4	296	0	335	3	0
6	9	154	0	165	1	0
7	В	2583	0	1305	9	0
8	С	2093	0	2161	16	0
9	D	1570	0	1606	15	0
10	Е	1535	0	1588	9	0
11	G	1312	0	1365	8	0
12	Н	293	0	315	0	0
13	J	1124	0	1166	11	0
14	K	947	0	1014	10	0
15	L	1034	0	1116	6	0
16	М	1084	0	1152	9	0
17	N	955	0	1006	8	0
18	0	880	0	919	4	0
19	Р	907	0	954	5	0
20	Q	938	0	1007	5	0
21	R	812	0	843	3	0
22	S	852	0	897	6	0
23	Т	732	0	806	3	0
24	U	725	0	772	9	0
25	V	730	0	740	3	0
26	W	598	0	615	2	0
27	Х	624	0	659	7	0
28	Y	493	0	518	2	0
29	Z	458	0	498	5	0
30	А	58293	0	29320	188	0
31	4	1	0	0	0	0
32	9	13	0	0	0	0
32	А	5	0	0	0	0
All	All	83760	0	54721	308	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (308) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
8:C:210:THR:HG22	8:C:215:VAL:HB	1.79	0.64

	ous puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
8:C:28:PRO:HG2	8:C:33:LEU:HD11	1.79	0.63
30:A:764:G:O2'	30:A:783:A:N7	2.30	0.62
30:A:1007:A:N1	30:A:1128:U:O2'	2.30	0.60
13:J:65:THR:HG21	30:A:1128:U:H2'	1.84	0.60
30:A:1270:A:O2'	30:A:1272:A:OP2	2.17	0.60
1:0:8:THR:CG2	30:A:2006:A:H5'	2.34	0.58
30:A:12:U:H2'	30:A:12:U:O2	2.05	0.57
15:L:21:ARG:HA	30:A:800:U:H2'	1.88	0.56
24:U:32:LYS:HB3	24:U:63:ALA:HB1	1.86	0.56
30:A:773:G:H5'	30:A:774:G:OP1	2.06	0.56
30:A:1594:A:O2'	30:A:1596:A:OP2	2.20	0.55
4:3:59:MET:SD	15:L:58:LYS:HD2	2.47	0.55
20:Q:50:ARG:HD3	30:A:1143:A:C5	2.43	0.54
30:A:1418:A:H2'	30:A:1419:G:O4'	2.09	0.53
16:M:53:MET:HG3	16:M:120:ALA:HB2	1.89	0.52
17:N:12:ARG:NH1	30:A:1260:A:O2'	2.42	0.52
7:B:104:U:O2'	25:V:74:GLN:NE2	2.42	0.52
30:A:1007:A:C2	30:A:1128:U:C2	2.96	0.52
21:R:68:ARG:NH2	30:A:1208:U:OP2	2.43	0.52
14:K:67:LYS:NZ	30:A:2712:A:N3	2.56	0.52
14:K:66:ARG:HD3	30:A:1652:G:OP1	2.08	0.52
30:A:45:G:H5'	30:A:46:G:OP1	2.09	0.52
7:B:49:U:H2'	7:B:50:C:C6	2.45	0.52
4:3:23:LYS:HB3	15:L:62:PRO:HG2	1.92	0.51
8:C:226:PRO:HG3	8:C:233:GLY:HA3	1.93	0.51
13:J:140:LEU:HD21	13:J:142:ILE:HD12	1.92	0.51
22:S:93:ALA:HB2	30:A:1600:A:C2	2.45	0.51
30:A:304:G:H5'	30:A:323:U:O2'	2.09	0.51
30:A:482:G:H2'	30:A:483:G:O4'	2.10	0.51
30:A:1417:A:H2'	30:A:1418:A:C8	2.45	0.51
30:A:2646:A:H2'	30:A:2647:G:O4'	2.11	0.51
27:X:11:PRO:HB3	27:X:29:LEU:HD23	1.93	0.51
6:9:1:ARG:N	30:A:2480:G:OP2	2.35	0.50
30:A:1112:G:C6	30:A:1113:A:N6	2.79	0.50
24:U:43:LYS:HG3	24:U:45:GLN:HG3	1.93	0.50
30:A:1890:G:O2'	30:A:1914:A:N1	2.40	0.50
30:A:1316:G:N7	30:A:1595:A:H2'	2.27	0.50
9:D:8:LYS:NZ	9:D:195:GLY:O	2.41	0.50
24:U:81:ARG:NH2	30:A:293:C:OP2	2.45	0.50
30:A:1401:C:H2'	30:A:1402:G:O4'	2.11	0.50
16:M:25:ASP:O	16:M:66:ARG:NH2	2.44	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
30:A:565:U:H2'	30:A:566:G:C8	2.47	0.50
16:M:13:GLN:HG3	30:A:899:A:C5	2.47	0.50
20:Q:53:LYS:NZ	30:A:983:C:OP2	2.45	0.50
30:A:2807:A:O2'	30:A:2812:A:N1	2.42	0.50
30:A:2259:A:H2'	30:A:2260:A:C8	2.47	0.49
7:B:1:U:H3	7:B:120:A:H2	1.61	0.49
17:N:38:LEU:N	17:N:39:PRO:HD2	2.27	0.49
30:A:301:A:N3	30:A:321:G:O2'	2.44	0.49
30:A:840:U:H2'	30:A:841:A:C8	2.47	0.49
30:A:2642:U:C5	30:A:2650:G:N2	2.81	0.49
30:A:735:U:H2'	30:A:735:U:O2	2.13	0.49
30:A:1013:G:H1'	30:A:1121:A:C2	2.46	0.49
30:A:807:G:H5'	30:A:828:U:OP1	2.12	0.49
30:A:1966:G:O2'	30:A:1968:U:OP2	2.29	0.49
8:C:97:ASP:HB3	30:A:1474:A:H2'	1.94	0.49
7:B:24:G:N7	7:B:57:G:H2'	2.27	0.49
30:A:1867:C:H2'	30:A:1868:U:O4'	2.13	0.49
9:D:5:ILE:CD1	9:D:202:ILE:HG12	2.43	0.49
30:A:2533:A:H2'	30:A:2534:U:C6	2.47	0.48
10:E:78:ARG:NH2	30:A:460:A:OP1	2.46	0.48
30:A:1762:U:H2'	30:A:1768:A:N6	2.29	0.48
29:Z:3:THR:HB	29:Z:36:GLU:HG2	1.95	0.48
30:A:465:G:H4'	30:A:491:A:N1	2.28	0.48
30:A:521:A:N7	30:A:2007:A:O2'	2.41	0.48
30:A:2811:U:O2	30:A:2811:U:O4'	2.32	0.48
25:V:44:HIS:CE1	25:V:48:VAL:HG21	2.49	0.48
30:A:633:A:H2'	30:A:634:C:O4'	2.14	0.48
30:A:899:A:N1	30:A:2263:G:H1'	2.28	0.48
9:D:150:GLN:HB2	30:A:2558:A:N7	2.29	0.48
30:A:821:U:H2'	30:A:822:A:C8	2.48	0.48
30:A:2048:A:N3	30:A:2048:A:H2'	2.29	0.48
2:1:22:THR:HG21	30:A:2405:U:H4'	1.94	0.48
11:G:3:VAL:HG21	30:A:2734:A:H4'	1.95	0.48
27:X:13:THR:HG21	30:A:187:G:OP2	2.14	0.48
30:A:1034:G:HO2'	30:A:1097:G:H1	1.61	0.48
14:K:2:ILE:HG12	14:K:8:LEU:HD21	1.96	0.48
29:Z:49:LYS:HE3	30:A:840:U:H5"	1.96	0.48
30:A:623:C:H2'	30:A:624:C:C6	2.49	0.48
30:A:736:U:O2	30:A:2000:A:H1'	2.14	0.48
22:S:93:ALA:HB2	30:A:1600:A:N1	2.29	0.47
30:A:33:U:H4'	30:A:34:U:OP1	2.15	0.47

	ous page	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
8:C:271:ARG:NH2	30:A:1782:U:OP2	2.39	0.47	
9:D:121:ALA:HB1	9:D:127:PHE:CD2	2.48	0.47	
14:K:22:ILE:HD11	14:K:42:THR:HG22	1.95	0.47	
30:A:183:G:H2'	30:A:184:G:O4'	2.14	0.47	
7:B:53:A:N7	18:O:64:TYR:OH	2.39	0.47	
8:C:61:TYR:CE1	30:A:1800:C:H3'	2.50	0.47	
18:O:111:ARG:NH2	30:A:2362:A:N3	2.62	0.47	
30:A:2665:A:H2'	30:A:2666:C:O4'	2.14	0.47	
30:A:2492:U:H5	30:A:2571:U:O4	1.98	0.47	
30:A:1918:A:H2'	30:A:1919:G:O4'	2.15	0.47	
8:C:2:ILE:HD11	8:C:201:LEU:HB2	1.96	0.47	
13:J:6:ALA:HB1	13:J:11:VAL:CG1	2.45	0.47	
19:P:113:LEU:O	19:P:114:ALA:C	2.58	0.46	
30:A:554:C:H2'	30:A:555:U:O4'	2.15	0.46	
30:A:1015:A:N6	30:A:1112:G:H2'	2.30	0.46	
30:A:1492:C:H4'	30:A:1494:A:C5	2.49	0.46	
30:A:2381:C:H2'	30:A:2382:G:O4'	2.14	0.46	
30:A:524:A:H2'	30:A:525:G:O4'	2.15	0.46	
10:E:82:VAL:O	10:E:83:THR:C	2.58	0.46	
30:A:2222:U:H2'	30:A:2223:G:O4'	2.15	0.46	
30:A:261:C:H2'	30:A:262:U:O4'	2.16	0.46	
8:C:59:HIS:HA	30:A:1554:G:H5'	1.97	0.46	
9:D:19:GLY:HA3	19:P:79:ILE:HG13	1.97	0.46	
9:D:81:GLU:OE1	30:A:2621:A:O2'	2.33	0.46	
13:J:122:LEU:HG	13:J:124:VAL:HG23	1.97	0.46	
14:K:58:LEU:HD11	14:K:86:LEU:HD13	1.97	0.46	
30:A:736:U:C5	30:A:2599:U:C5	3.03	0.46	
11:G:10:ILE:HD11	11:G:49:LEU:HG	1.98	0.46	
30:A:91:A:H1'	30:A:92:A:C8	2.50	0.46	
4:3:43:ARG:N	4:3:44:PRO:CD	2.78	0.46	
10:E:1:MET:HE1	10:E:112:VAL:HG11	1.98	0.46	
8:C:30:ALA:N	8:C:31:PRO:CD	2.79	0.46	
11:G:163:TYR:HB2	11:G:166:GLU:HB2	1.98	0.45	
30:A:634:C:H2'	30:A:636:G:C8	2.50	0.45	
30:A:2219:U:H2'	30:A:2220:G:C8	2.52	0.45	
8:C:75:ALA:HB2	8:C:95:TYR:CD2	2.51	0.45	
10:E:180:ILE:HG23	15:L:2:ARG:HB3	1.99	0.45	
30:A:1514:A:H2'	30:A:1515:G:O4'	2.17	0.45	
10:E:148:VAL:HA	10:E:169:ARG:O	2.16	0.45	
16:M:105:MET:HE3	16:M:117:PHE:CE2	2.51	0.45	
30:A:26:G:C6	30:A:27:G:N1	2.85	0.45	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
30:A:155:G:H3'	30:A:156:U:H6	1.82	0.45	
30:A:571:A:C2	30:A:1243:G:C2	3.05	0.45	
4:3:15:LYS:HD2	4:3:20:ILE:HD13	1.97	0.45	
17:N:10:LEU:O	17:N:11:ASN:C	2.60	0.45	
28:Y:6:LEU:HB2	28:Y:56:VAL:HG21	1.99	0.45	
30:A:289:C:H2'	30:A:290:G:O4'	2.17	0.45	
30:A:646:U:H2'	30:A:647:C:C6	2.51	0.45	
13:J:43:GLU:O	13:J:44:TYR:C	2.60	0.44	
23:T:7:ILE:HG23	23:T:46:ALA:HA	1.99	0.44	
30:A:1296:U:H4'	30:A:1297:U:O5'	2.17	0.44	
30:A:2279:G:H2'	30:A:2280:G:O4'	2.18	0.44	
30:A:2313:A:H2'	30:A:2314:A:C8	2.51	0.44	
8:C:49:THR:HB	30:A:1789:U:O2	2.17	0.44	
13:J:14:ASP:HB2	13:J:16:TYR:CE1	2.52	0.44	
14:K:19:VAL:HG11	14:K:86:LEU:HD21	1.99	0.44	
30:A:2024:G:H2'	30:A:2025:U:O4'	2.17	0.44	
9:D:25:THR:HG21	9:D:193:VAL:HB	2.00	0.44	
22:S:20:VAL:HG11	22:S:44:ALA:HA	1.97	0.44	
30:A:1370:C:H2'	30:A:1371:G:C8	2.52	0.44	
30:A:1981:U:H3'	30:A:1982:C:H2'	1.99	0.44	
30:A:2678:G:H2'	30:A:2679:G:O4'	2.18	0.44	
9:D:150:GLN:NE2	30:A:2018:G:H1'	2.33	0.44	
9:D:12:THR:OG1	9:D:13:ARG:N	2.50	0.44	
30:A:2775:C:H2'	30:A:2879:A:C2	2.52	0.44	
5:4:7:VAL:HG21	5:4:23:VAL:HG12	1.99	0.44	
8:C:5:CYS:SG	8:C:12:ARG:NH1	2.91	0.44	
13:J:56:VAL:HG11	13:J:101:LEU:CD2	2.48	0.44	
17:N:34:ILE:HG22	17:N:36:THR:HG23	1.99	0.44	
19:P:50:ARG:CZ	19:P:52:ARG:HG3	2.48	0.44	
30:A:380:A:H1'	30:A:400:G:O4'	2.17	0.44	
30:A:1259:A:N1	30:A:1279:C:O2'	2.42	0.44	
30:A:2448:C:O2	30:A:2477:U:H5	2.01	0.44	
16:M:123:LYS:NZ	30:A:2469:C:N3	2.55	0.44	
30:A:2412:A:H4'	30:A:2413:C:OP2	2.17	0.44	
20:Q:69:ARG:NH2	20:Q:74:SER:OG	2.51	0.43	
8:C:2:ILE:HG23	8:C:16:VAL:CG1	2.48	0.43	
30:A:1580:A:H2'	30:A:1581:G:O4'	2.18	0.43	
7:B:67:A:N6	7:B:108:A:H2'	2.33	0.43	
10:E:83:THR:HG21	30:A:575:A:H5'	1.99	0.43	
24:U:11:ILE:HG21	24:U:79:ALA:HB2	2.00	0.43	
30:A:37:C:H4'	30:A:440:U:OP1	2.18	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
7:B:67:A:C6	7:B:109:C:C6	3.06	0.43	
21:R:27:VAL:O	21:R:66:HIS:NE2	2.49	0.43	
30:A:1354:C:H2'	30:A:1355:G:O4'	2.18	0.43	
30:A:2855:G:H2'	30:A:2856:C:O4'	2.18	0.43	
27:X:12:VAL:HG22	27:X:28:PHE:HB2	1.99	0.43	
18:O:34:HIS:O	18:O:102:ARG:NH2	2.52	0.43	
21:R:69:GLY:O	21:R:90:ARG:HD2	2.19	0.43	
30:A:2632:C:H2'	30:A:2633:U:O4'	2.18	0.43	
3:2:34:ARG:CZ	3:2:39:ARG:HD3	2.48	0.43	
13:J:39:LYS:HD2	13:J:44:TYR:CE1	2.54	0.43	
16:M:50:ARG:HA	16:M:53:MET:HE2	1.99	0.43	
29:Z:40:THR:HG22	29:Z:42:CYS:H	1.83	0.43	
30:A:242:A:H2'	30:A:243:G:O4'	2.17	0.43	
30:A:1544:A:O4'	30:A:1546:G:C8	2.71	0.43	
5:4:7:VAL:HG13	5:4:37:GLY:HA2	2.01	0.43	
14:K:71:ARG:HH22	14:K:123:LEU:C	2.27	0.43	
30:A:1275:U:H2'	30:A:1276:C:C6	2.53	0.43	
15:L:108:VAL:HB	15:L:125:LEU:HD22	2.00	0.43	
17:N:65:LEU:O	17:N:69:ARG:HG2	2.19	0.43	
30:A:13:A:O2'	30:A:15:G:N7	2.45	0.43	
30:A:559:G:H2'	30:A:2016:A:N7	2.34	0.43	
30:A:818:A:N7	30:A:2233:A:O2'	2.47	0.43	
30:A:1945:G:H2'	30:A:1946:A:O4'	2.18	0.43	
30:A:2277:U:H2'	30:A:2278:G:C8	2.54	0.43	
9:D:155:VAL:O	30:A:2605:C:H5'	2.18	0.43	
30:A:1922:A:H2	30:A:1929:U:H3	1.65	0.43	
2:1:23:THR:OG1	2:1:24:ASP:N	2.51	0.42	
11:G:57:VAL:HB	11:G:60:ALA:HB2	2.00	0.42	
13:J:36:LEU:O	13:J:51:GLY:HA3	2.19	0.42	
18:O:35:VAL:HG13	18:O:74:VAL:HG21	1.99	0.42	
29:Z:15:ARG:O	29:Z:20:LYS:NZ	2.52	0.42	
30:A:1612:G:H2'	30:A:1612:G:N3	2.34	0.42	
30:A:2253:A:H5"	30:A:2254:A:H5'	2.01	0.42	
9:D:68:PHE:CE1	9:D:79:LEU:HD21	2.54	0.42	
14:K:58:LEU:HD11	14:K:86:LEU:HB3	1.99	0.42	
30:A:85:G:C5	30:A:98:A:C2	3.08	0.42	
30:A:190:C:H6	30:A:190:C:O5'	2.02	0.42	
30:A:613:C:O2	30:A:646:U:H4'	2.19	0.42	
30:A:1623:A:H5'	30:A:1744:C:O2'	2.19	0.42	
30:A:2357:G:C6	30:A:2358:U:C5	3.07	0.42	
30:A:2673:U:H2'	30:A:2674:G:O4'	2.20	0.42	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
17:N:44:LEU:HD22	17:N:48:VAL:HG23	2.02	0.42	
20:Q:33:VAL:HG21	30:A:2005:A:H4'	2.01	0.42	
3:2:3:ARG:HH22	30:A:741:A:P	2.41	0.42	
5:4:7:VAL:HG22	5:4:37:GLY:HA3	2.02	0.42	
8:C:145:LEU:HD11	8:C:153:LEU:HD21	2.01	0.42	
17:N:32:GLU:HB3	17:N:118:ARG:HD2	2.02	0.42	
20:Q:80:ASN:ND2	20:Q:84:LYS:HE2	2.35	0.42	
7:B:26:C:H2'	7:B:27:C:O4'	2.19	0.42	
24:U:11:ILE:CG2	24:U:79:ALA:HB2	2.49	0.42	
30:A:1837:A:N1	30:A:2073:G:H1'	2.35	0.42	
30:A:2300:G:H2'	30:A:2301:U:C6	2.54	0.42	
1:0:3:GLN:HA	30:A:2601:U:C2	2.55	0.42	
28:Y:39:GLN:O	28:Y:42:THR:HG22	2.19	0.42	
30:A:2835:U:C6	30:A:2853:G:N2	2.88	0.42	
30:A:2838:G:H2'	30:A:2839:C:O4'	2.19	0.42	
13:J:24:THR:O	13:J:25:LEU:C	2.63	0.42	
30:A:712:C:H2'	30:A:713:U:O4'	2.20	0.42	
17:N:105:GLY:HA3	30:A:1271:A:N7	2.35	0.42	
27:X:67:LEU:HD12	27:X:70:MET:CE	2.50	0.42	
30:A:2828:G:H2'	30:A:2829:G:O4'	2.20	0.42	
11:G:23:ILE:HG12	11:G:42:ILE:HD13	2.01	0.42	
26:W:52:ASP:CG	26:W:54:THR:HG1	2.28	0.42	
30:A:1576:U:H2'	30:A:1577:G:O4'	2.20	0.41	
30:A:2273:A:N3	30:A:2273:A:H2'	2.35	0.41	
16:M:13:GLN:HB3	30:A:942:G:H5"	2.02	0.41	
22:S:7:HIS:HB2	22:S:50:VAL:HG22	2.02	0.41	
30:A:751:U:H4'	30:A:752:G:O5'	2.19	0.41	
30:A:1341:C:H2'	30:A:1342:G:O4'	2.20	0.41	
30:A:1864:G:H2'	30:A:1865:C:O4'	2.19	0.41	
30:A:263:A:N1	30:A:416:U:O2'	2.51	0.41	
30:A:1770:A:H1'	30:A:1924:A:N6	2.36	0.41	
30:A:2314:A:H2'	30:A:2315:U:C6	2.55	0.41	
7:B:29:A:H2'	7:B:30:C:O4'	2.21	0.41	
22:S:89:ALA:HB1	30:A:737:G:C8	2.55	0.41	
30:A:219:A:N1	30:A:263:A:O2'	2.49	0.41	
30:A:1842:A:H61	30:A:1870:G:H1'	1.85	0.41	
8:C:164:VAL:HG11	8:C:180:MET:HE1	2.01	0.41	
24:U:82:ILE:CG2	24:U:93:ARG:HB3	2.50	0.41	
30:A:950:G:H21	30:A:2236:G:H1	1.67	0.41	
30:A:1875:A:H2'	30:A:1876:A:O4'	2.20	0.41	
30:A:2805:G:H2'	30:A:2807:A:N7	2.36	0.41	

	a a contraction of the contracti	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
19:P:74:GLN:O	19:P:75:THR:C	2.64	0.41	
30:A:1037:A:C2	30:A:2737:G:C4	3.08	0.41	
30:A:1982:C:H4'	30:A:1983:C:OP1	2.20	0.41	
30:A:2632:C:OP2	30:A:2718:G:O2'	2.36	0.41	
16:M:110:GLU:OE2	16:M:114:ARG:NH1	2.53	0.41	
19:P:17:PRO:HG3	19:P:83:ILE:O	2.21	0.41	
23:T:61:LEU:HD12	23:T:61:LEU:C	2.45	0.41	
30:A:1548:U:H2'	30:A:1549:U:O4'	2.21	0.41	
9:D:148:GLN:HE21	9:D:148:GLN:HB2	1.71	0.41	
25:V:44:HIS:NE2	25:V:48:VAL:HG21	2.35	0.41	
30:A:65:C:O2'	30:A:445:C:N3	2.51	0.41	
30:A:802:U:H2'	30:A:803:C:C6	2.56	0.41	
30:A:808:A:C4	30:A:1173:A:C2	3.09	0.41	
30:A:2733:G:C2	30:A:2742:U:C5	3.09	0.41	
9:D:155:VAL:HG21	30:A:2604:G:H21	1.86	0.41	
10:E:100:TYR:CZ	10:E:104:MET:HE3	2.56	0.41	
16:M:64:TRP:HB2	16:M:104:GLU:HB2	2.03	0.41	
27:X:2:ARG:C	27:X:32:LEU:HD11	2.46	0.41	
30:A:243:G:O2'	30:A:373:A:N1	2.49	0.41	
30:A:818:A:N7	30:A:2234:C:H5'	2.36	0.41	
30:A:1519:C:C2	30:A:1524:G:C6	3.09	0.41	
30:A:1723:A:H2'	30:A:1724:G:O4'	2.21	0.41	
30:A:2450:G:H2'	30:A:2451:C:O4'	2.21	0.41	
3:2:3:ARG:HA	3:2:3:ARG:HD3	1.93	0.41	
8:C:27:LYS:NZ	30:A:1554:G:N7	2.63	0.41	
26:W:33:ILE:HG21	26:W:76:VAL:HG11	2.03	0.41	
27:X:29:LEU:HD12	30:A:2216:G:H5"	2.03	0.41	
30:A:194:A:H2'	30:A:194:A:N3	2.35	0.41	
30:A:687:C:O2'	30:A:723:A:N6	2.54	0.41	
30:A:1704:U:H2'	30:A:1705:G:O4'	2.21	0.41	
11:G:82:PHE:CE2	11:G:137:LYS:HB2	2.56	0.40	
13:J:114:LEU:O	13:J:117:ALA:HB3	2.20	0.40	
24:U:98:ASN:HB3	24:U:100:GLU:HG2	2.02	0.40	
30:A:933:A:C4	30:A:2434:A:C2	3.10	0.40	
11:G:16:VAL:HG11	11:G:49:LEU:HD11	2.04	0.40	
24:U:80:ASP:OD2	24:U:95:PHE:HB3	2.21	0.40	
27:X:63:ILE:HG13	27:X:67:LEU:HD13	2.03	0.40	
30:A:1430:C:H2'	30:A:1431:C:C6	2.56	0.40	
30:A:1432:U:H2'	30:A:1433:G:O4'	2.22	0.40	
30:A:2377:G:N2	30:A:2415:G:O4'	2.55	0.40	
10:E:47:THR:HG22	10:E:85:ALA:HB3	2.04	0.40	

	ous puge	-	
Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
24:U:38:ILE:HG22	24:U:39:ASN:N	2.36	0.40
30:A:74:A:H4'	30:A:75:G:O5'	2.21	0.40
30:A:271:A:H2'	30:A:272:G:O4'	2.21	0.40
30:A:2072:U:H2'	30:A:2073:G:C8	2.57	0.40
9:D:56:LYS:HD2	9:D:59:ARG:HG3	2.04	0.40
9:D:109:VAL:O	9:D:171:THR:HA	2.22	0.40
11:G:171:LYS:NZ	30:A:2516:A:N7	2.64	0.40
14:K:22:ILE:HD12	30:A:1938:A:C5	2.56	0.40
15:L:132:LYS:HG3	15:L:142:ILE:HD13	2.02	0.40
22:S:1:MET:SD	22:S:1:MET:C	3.04	0.40
23:T:19:LYS:NZ	30:A:1324:U:OP1	2.48	0.40
30:A:1695:U:H2'	30:A:1696:C:O4'	2.22	0.40
30:A:2248:U:OP1	30:A:2373:U:O2'	2.32	0.40
30:A:2836:A:N7	30:A:2854:A:O2'	2.52	0.40
10:E:148:VAL:HB	10:E:187:MET:HG2	2.03	0.40
14:K:63:VAL:HG12	14:K:107:LEU:HD11	2.04	0.40
29:Z:18:LYS:HG2	30:A:839:C:H5"	2.03	0.40
30:A:205:A:H2'	30:A:206:C:O4'	2.22	0.40
30:A:390:A:C2	30:A:391:A:C4	3.09	0.40
30:A:1900:C:O2	30:A:1900:C:O4'	2.39	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	0	51/56~(91%)	50 (98%)	1 (2%)	0	100	100
2	1	52/56~(93%)	50~(96%)	2(4%)	0	100	100
3	2	42/44~(96%)	42 (100%)	0	0	100	100
4	3	61/64~(95%)	59~(97%)	2(3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
5	4	35/37~(95%)	33~(94%)	2~(6%)	0	100	100
6	9	15/17~(88%)	13 (87%)	2(13%)	0	100	100
8	С	270/274~(98%)	255 (94%)	15 (6%)	0	100	100
9	D	207/209~(99%)	199 (96%)	8 (4%)	0	100	100
10	Е	198/200~(99%)	197 (100%)	1 (0%)	0	100	100
11	G	174/177~(98%)	165 (95%)	9(5%)	0	100	100
12	Н	38/150~(25%)	36 (95%)	2(5%)	0	100	100
13	J	140/142~(99%)	134 (96%)	5 (4%)	1 (1%)	19	42
14	К	121/123~(98%)	116 (96%)	4 (3%)	1 (1%)	16	38
15	L	141/144 (98%)	135 (96%)	5 (4%)	1 (1%)	19	42
16	М	133/136~(98%)	129 (97%)	4 (3%)	0	100	100
17	Ν	118/126 (94%)	113 (96%)	5 (4%)	0	100	100
18	Ο	114/117~(97%)	109 (96%)	5 (4%)	0	100	100
19	Р	112/117~(96%)	109 (97%)	3 (3%)	0	100	100
20	Q	114/117~(97%)	111 (97%)	3 (3%)	0	100	100
21	R	101/103~(98%)	99~(98%)	2(2%)	0	100	100
22	S	108/110~(98%)	104 (96%)	4 (4%)	0	100	100
23	Т	91/100 (91%)	90 (99%)	1 (1%)	0	100	100
24	U	92/105~(88%)	87~(95%)	5(5%)	0	100	100
25	V	90/92~(98%)	89 (99%)	1 (1%)	0	100	100
26	W	76/85~(89%)	72 (95%)	4 (5%)	0	100	100
27	Х	75/78~(96%)	72 (96%)	3 (4%)	0	100	100
28	Y	$\overline{60/63}~(95\%)$	57 (95%)	2(3%)	1 (2%)	7	20
29	Z	56/58~(97%)	55 (98%)	1 (2%)	0	100	100
All	All	2885/3100 (93%)	2780 (96%)	101 (4%)	4 (0%)	50	73

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
28	Y	3	ALA
13	J	44	TYR
14	Κ	5	GLN
15	L	29	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers Perce		Perce	ntiles
1	0	43/46~(94%)	41 (95%)	2~(5%)	22	49
2	1	47/49~(96%)	47 (100%)	0	100	100
3	2	36/36~(100%)	35~(97%)	1 (3%)	38	68
4	3	52/53~(98%)	51 (98%)	1 (2%)	52	79
5	4	34/34~(100%)	34 (100%)	0	100	100
6	9	17/17~(100%)	17 (100%)	0	100	100
8	С	218/220~(99%)	217 (100%)	1 (0%)	86	95
9	D	162/162~(100%)	160 (99%)	2 (1%)	67	86
10	Е	161/161 (100%)	154 (96%)	7 (4%)	25	52
11	G	135/136~(99%)	133 (98%)	2 (2%)	60	83
12	Н	31/112~(28%)	30 (97%)	1 (3%)	34	63
13	J	117/117~(100%)	109 (93%)	8 (7%)	13	32
14	K	104/104 (100%)	103 (99%)	1 (1%)	73	89
15	L	105/106~(99%)	101 (96%)	4 (4%)	28	56
16	М	110/111 (99%)	107 (97%)	3 (3%)	40	69
17	Ν	99/102~(97%)	97~(98%)	2(2%)	50	78
18	О	83/84~(99%)	81 (98%)	2(2%)	44	73
19	Р	97/100~(97%)	94 (97%)	3(3%)	35	64
20	Q	89/90~(99%)	88 (99%)	1 (1%)	70	87
21	R	85/85~(100%)	83 (98%)	2 (2%)	44	73
22	S	90/90~(100%)	87 (97%)	3 (3%)	33	62
23	Т	79/83~(95%)	75 (95%)	4 (5%)	20	45
24	U	74/81~(91%)	71 (96%)	3 (4%)	26	54
25	V	77/77~(100%)	74 (96%)	3 (4%)	27	56
26	W	62/66~(94%)	59 (95%)	3(5%)	21	48
27	Х	67/68~(98%)	66 (98%)	1 (2%)	60	83

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
28	Y	52/53~(98%)	47 (90%)	5(10%)	7 17
29	Ζ	52/52~(100%)	50 (96%)	2(4%)	28 56
All	All	2378/2495~(95%)	2311 (97%)	67 (3%)	40 68

All (67) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	0	40	ASN
1	0	53	ILE
3	2	43	SER
4	3	6	ASN
8	С	218	THR
9	D	110	THR
9	D	148	GLN
10	Е	79	SER
10	Е	116	ARG
10	Е	125	VAL
10	Е	137	LEU
10	Е	142	LEU
10	Е	175	ASP
10	Е	195	VAL
11	G	55	GLU
11	G	61	TRP
12	Н	19	VAL
13	J	1	MET
13	J	5	VAL
13	J	9	GLU
13	J	31	GLU
13	J	64	VAL
13	J	106	LYS
13	J	113	PRO
13	J	142	ILE
14	K	19	VAL
15	L	14	THR
15	L	19	VAL
15	L	60	ARG
15	L	121	THR
16	М	30	GLU
16	М	124	LEU
16	М	135	VAL
17	Ν	15	SER

Mol	Chain	Res	Type
17	N	44	LEU
18	0	47	VAL
18	0	112	GLU
19	Р	5	LYS
19	Р	80	VAL
19	Р	102	ARG
20	Q	17	LEU
21	R	14	VAL
21	R	19	THR
22	S	29	VAL
22	S	92	ARG
22	S	100	SER
23	Т	10	VAL
23	Т	18	GLU
23	Т	25	GLU
23	Т	37	ASP
24	U	6	ARG
24	U	26	LYS
24	U	69	VAL
25	V	74	GLN
25	V	84	LYS
25	V	93	ILE
26	W	14	SER
26	W	37	ARG
26	W	51	LYS
27	Х	55	MET
28	Y	4	GLN
28	Y	5	ASP
28	Y	11	VAL
28	Y	13	GLU
28	Y	18	LEU
29	Z	54	VAL
29	Ζ	58	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (24) such sidechains are listed below:

Mol	Chain	Res	Type
4	3	6	ASN
8	С	36	ASN
8	С	39	ASN
8	С	272	ASN
9	D	102	ASN

Mol	Chain	Res	Type
9	D	148	GLN
9	D	150	GLN
9	D	173	GLN
10	Е	93	GLN
10	Е	162	ASN
11	G	37	ASN
11	G	138	GLN
14	Κ	34	HIS
19	Р	40	GLN
19	Р	65	ASN
22	S	31	GLN
22	S	70	ASN
23	Т	59	ASN
25	V	74	GLN
27	Х	35	HIS
28	Y	15	ASN
28	Y	25	GLN
28	Y	31	GLN
28	Y	36	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
30	А	2712/2721~(99%)	383~(14%)	54 (1%)
7	В	120/121~(99%)	18 (15%)	3(2%)
All	All	2832/2842~(99%)	401 (14%)	57~(2%)

All (401) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
7	В	2	G
7	В	3	С
7	В	17	С
7	В	25	А
7	В	26	С
7	В	35	С
7	В	36	U
7	В	37	U
7	В	38	С
7	В	45	G
7	В	46	А

Mol	Chain	Res	Type
7	В	57	G
7	В	88	U
7	В	90	U
7	В	91	С
7	В	109	С
7	В	110	А
7	В	121	А
30	А	10	А
30	А	12	U
30	А	34	U
30	А	46	G
30	А	71	А
30	А	74	А
30	А	75	G
30	А	84	А
30	А	93	А
30	А	96	С
30	А	101	U
30	А	102	G
30	А	103	А
30	А	118	А
30	А	119	А
30	А	120	U
30	А	125	А
30	А	126	А
30	А	136	C
30	А	137	А
30	А	155	G
30	А	156	U
30	A	160	U
30	A	161	A
30	А	179	А
30	A	194	A
30	А	197	А
30	A	198	U
30	A	211	A
30	А	213	G
30	A	214	A
30	A	219	A
30	A	220	A
30	A	246	G
30	А	247	С

Mol	Chain	Res	Type
30	А	253	А
30	А	263	А
30	А	264	G
30	А	268	U
30	А	269	U
30	А	270	А
30	А	272	G
30	А	277	А
30	А	278	С
30	А	279	A
30	А	280	С
30	A	281	А
30	А	286	А
30	A	303	А
30	A	309	A
30	A	321	G
30	A	322	A
30	А	323	U
30	А	337	А
30	А	338	С
30	А	346	G
30	А	348	U
30	А	349	С
30	А	350	А
30	А	354	А
30	А	356	А
30	А	360	A
30	А	361	G
30	A	375	G
30	А	376	U
30	A	377	G
30	A	393	A
30	A	394	U
30	A	395	G
30	A	398	G
30	A	400	G
30	A	401	А
30	A	409	C
30	A	423	U
30	A	424	А
30	A	440	U
30	А	445	С

Mol	Chain	Res	Type
30	А	470	G
30	А	479	U
30	А	480	G
30	А	494	А
30	А	498	С
30	А	519	G
30	А	520	С
30	А	521	А
30	А	522	G
30	А	532	G
30	А	533	С
30	А	539	С
30	А	552	А
30	А	562	U
30	A	564	A
30	A	569	U
30	А	575	A
30	A	592	A
30	А	602	U
30	A	603	С
30	A	616	A
30	А	626	A
30	A	634	С
30	A	635	U
30	A	636	G
30	A	642	U
30	A	643	С
30	A	644	A
30	A	674	A
30	A	675	U
30	A	701	A
30	A	706	C
30	A	718	G
30	A	719	A
30	A	736	U
30	A	753	A
30	A	754	C
30	A	760	G
30	A	764	G
30	A	765	G
30	A	771	A
30	A	773	G

Mol	Chain	Res	Type
30	А	774	G
30	А	782	А
30	А	794	G
30	А	801	С
30	А	808	А
30	А	816	U
30	А	817	U
30	А	847	G
30	А	855	А
30	А	868	G
30	А	899	А
30	А	903	С
30	А	920	С
30	А	929	A
30	А	934	С
30	А	949	С
30	А	956	С
30	А	962	G
30	А	971	А
30	А	983	С
30	А	984	А
30	А	987	U
30	А	993	С
30	А	1000	U
30	А	1009	G
30	А	1013	G
30	А	1020	U
30	А	1027	А
30	А	1034	G
30	А	1098	А
30	А	1099	G
30	А	1117	U
30	А	1119	U
30	А	1120	A
30	А	1121	A
30	А	1122	С
30	А	1123	G
30	А	1126	G
30	А	1129	А
30	A	1130	А
30	А	1156	С
30	А	1164	G

Mol	Chain	Res	Type
30	А	1190	G
30	А	1232	G
30	А	1237	А
30	А	1240	G
30	А	1255	G
30	А	1256	А
30	А	1270	А
30	А	1271	А
30	А	1284	G
30	А	1285	А
30	А	1286	А
30	А	1305	А
30	А	1310	U
30	A	1311	A
30	А	1329	С
30	A	1336	U
30	А	1349	А
30	А	1362	А
30	А	1363	U
30	А	1367	А
30	А	1400	G
30	А	1403	А
30	А	1411	А
30	А	1412	С
30	А	1436	G
30	А	1437	А
30	А	1438	С
30	А	1439	G
30	А	1442	U
30	А	1444	U
30	А	1445	С
30	А	1451	U
30	A	1452	С
30	А	1466	U
30	А	1477	U
30	A	1488	С
30	A	1489	U
30	A	1490	С
30	А	1491	U
30	A	1494	A
30	А	1495	А
30	А	1496	G

Mol	Chain	Res	Type
30	А	1501	А
30	А	1510	G
30	А	1516	С
30	А	1521	А
30	А	1522	С
30	А	1523	G
30	А	1524	G
30	А	1527	G
30	А	1528	U
30	А	1529	G
30	А	1540	U
30	А	1552	А
30	А	1555	А
30	А	1564	U
30	А	1569	U
30	А	1570	U
30	А	1571	С
30	А	1582	G
30	А	1594	А
30	А	1595	А
30	А	1596	А
30	А	1633	U
30	А	1634	U
30	А	1635	G
30	А	1660	G
30	А	1663	А
30	А	1699	G
30	А	1712	С
30	А	1713	U
30	А	1714	С
30	A	1716	С
30	А	1719	A
30	А	1720	U
30	А	1722	G
30	А	1748	G
30	А	1757	A
30	А	1768	A
30	А	1775	A
30	А	1784	С
30	А	1785	A
30	А	1786	A
30	А	1800	С

Mol	Chain	Res	Type
30	А	1813	А
30	А	1817	С
30	А	1831	А
30	А	1841	G
30	А	1855	U
30	А	1856	С
30	А	1857	G
30	А	1858	G
30	А	1870	G
30	А	1892	G
30	А	1893	G
30	А	1899	А
30	А	1900	С
30	А	1905	A
30	А	1915	G
30	А	1916	G
30	А	1917	U
30	А	1923	А
30	А	1924	А
30	А	1926	U
30	А	1927	С
30	А	1941	U
30	А	1951	С
30	А	1953	С
30	А	1956	А
30	А	1957	U
30	А	1958	G
30	А	1968	U
30	А	1977	U
30	A	1978	G
30	А	1979	U
30	A	1983	С
30	A	2006	A
30	А	2008	U
30	А	2009	С
30	A	2017	A
30	А	2019	A
30	A	2029	С
30	A	2035	G
30	A	2037	U
30	A	2041	С
30	А	2042	G

Mol	Chain	Res	Type
30	А	2046	А
30	А	2047	G
30	А	2055	G
30	А	2082	С
30	А	2090	С
30	А	2173	G
30	А	2177	А
30	А	2184	А
30	А	2189	U
30	А	2190	G
30	А	2197	U
30	А	2198	А
30	А	2211	А
30	А	2224	G
30	А	2237	G
30	А	2254	A
30	А	2259	А
30	А	2264	А
30	А	2268	G
30	А	2269	С
30	А	2273	А
30	А	2283	А
30	А	2291	U
30	А	2311	G
30	А	2319	А
30	А	2321	А
30	А	2333	С
30	А	2340	А
30	А	2347	А
30	А	2369	G
30	А	2371	С
30	А	2392	A
30	А	2410	С
30	А	2411	A
30	А	2415	G
30	А	2416	A
30	А	2421	А
30	А	2427	U
30	А	2434	A
30	А	2456	G
30	А	2462	A
30	A	2467	G

Mol	Chain	Res	Type
30	А	2468	А
30	А	2477	U
30	А	2484	С
30	А	2488	G
30	А	2489	А
30	А	2491	G
30	А	2504	А
30	А	2515	G
30	А	2533	А
30	А	2540	U
30	А	2552	А
30	А	2553	G
30	А	2559	С
30	А	2568	G
30	А	2571	U
30	А	2595	U
30	А	2599	U
30	А	2615	U
30	А	2640	А
30	А	2675	U
30	А	2676	U
30	А	2700	G
30	А	2730	G
30	А	2734	А
30	А	2736	А
30	А	2743	А
30	А	2744	А
30	А	2747	G
30	А	2751	А
30	A	2764	А
30	А	2765	U
30	A	2776	U
30	А	2777	G
30	A	2779	U
30	А	2780	A
30	A	2784	U
30	A	2785	А
30	А	2786	А
30	A	2793	U
30	А	2797	G
30	A	2799	G
30	A	2806	U

\mathbf{Mol}	Chain	\mathbf{Res}	Type
30	А	2807	А
30	А	2821	А
30	А	2853	G
30	А	2859	А
30	А	2860	С
30	А	2869	А
30	А	2870	U
30	А	2871	U
30	А	2872	G
30	А	2873	С
30	А	2874	С
30	А	2888	С

All (57) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
7	В	42	U
7	В	45	G
7	В	109	С
30	А	33	U
30	А	125	А
30	А	197	А
30	А	219	А
30	А	269	U
30	А	277	А
30	А	375	G
30	А	376	U
30	А	423	U
30	А	479	U
30	А	537	G
30	А	674	А
30	А	735	U
30	А	753	А
30	А	765	G
30	А	773	G
30	А	961	А
30	А	972	А
30	А	983	С
30	А	1120	А
30	A	1122	С
30	A	1129	А
30	A	1163	A

Mol	Chain	Res	Type
30	А	1270	А
30	А	1284	G
30	А	1285	А
30	А	1304	С
30	А	1474	А
30	А	1481	U
30	А	1487	U
30	А	1521	А
30	А	1527	G
30	А	1569	U
30	А	1594	А
30	А	1595	А
30	А	1596	А
30	А	1633	U
30	А	1886	А
30	А	1899	А
30	А	1926	U
30	А	1949	U
30	А	2197	U
30	А	2268	G
30	А	2416	А
30	А	2433	G
30	А	2467	G
30	А	2504	А
30	А	2567	G
30	А	2742	U
30	А	2776	U
30	А	2784	U
30	А	2785	А
30	А	2821	А
30	А	2859	А

Continued	from	mronious	maaa
Communea	JIOIII	previous	puye

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
30	А	5

All	chain	breaks	are	listed	below:	

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	A	2291:U	O3'	2298:U	Р	16.53
1	A	1157:U	O3'	1163:A	Р	16.04
1	А	2091:U	O3'	2171:G	Р	14.86
1	A	1037:A	O3'	1097:G	Р	14.40
1	А	869:G	O3'	887:C	Р	14.30

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-51947. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

Z Index: 208

6.2.2 Raw map

X Index: 208

Y Index: 208

Z Index: 208

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 235

Z Index: 213

6.3.2 Raw map

X Index: 235

Y Index: 200

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.055. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 462 $\rm nm^3;$ this corresponds to an approximate mass of 417 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.370 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	2.70	-	-	
Author-provided FSC curve	2.71	2.98	2.73	
Unmasked-calculated*	3.20	3.96	3.24	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.20 differs from the reported value 2.7 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-51947 and PDB model 9H91. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.055 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.055).

9.4 Atom inclusion (i)

At the recommended contour level, 90% of all backbone atoms, 91% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.055) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9110	0.6400
0	0.9170	0.6620
1	0.8300	0.6380
2	0.9420	0.6720
3	0.9470	0.6820
4	0.9300	0.6620
9	0.7550	0.6090
А	0.9330	0.6410
В	0.8950	0.6140
С	0.9170	0.6660
D	0.8890	0.6510
Ε	0.8300	0.6180
G	0.7060	0.5830
Н	0.7070	0.5790
J	0.8920	0.6560
К	0.8930	0.6500
L	0.8760	0.6470
М	0.8950	0.6620
Ν	0.9210	0.6640
0	0.8490	0.6250
Р	0.8500	0.6370
Q	0.9270	0.6660
R	0.8580	0.6310
S	0.8620	0.6390
Т	0.7820	0.6130
U	0.7800	0.6060
V	0.8380	0.6370
W	0.8970	0.6640
X	0.8810	0.6510
Y	0.7500	0.5840
Z	0.8620	0.6340

0.0 <0.0

1.0

