

Mar 3, 2025 – 12:23 pm GMT

PDB ID 9GZ1 : EMD-51719 EMDB ID : Title Beta-cardiac myosin interacting heads motif complexed to mavacamten : Authors McMillan, S.N.; Pitts, J.R.T.; Barua, B.; Winkelmann, D.A.; Scarff, C.A. : Deposited on 2024-10-03 : 3.70 Å(reported) Resolution : Based on initial model : .

This is a Full wwPDB EM Validation Report for a publicly released PDB entry. We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	EM structures
wiethc	$(\# { m Entries})$	$(\# { m Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of cl	nain	
1	А	1145	56%	23%	21%
1	В	1145	54%	25%	21%
2	С	187	63%	14% •	22%
2	Е	187	50%	29%	21%
3	D	168	62%	23%	• 14%
3	F	168	61%	26%	13%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
7	XB2	В	1204	-	-	Х	-

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 19295 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	Δ	900	Total	С	Ν	Ο	\mathbf{S}	0	0
		300	7296	4652	1247	1356	41	0	0
1	В	000	Total	С	Ν	Ο	\mathbf{S}	0	0
	D	900	7296	4652	1247	1356	41	0	U

• Molecule 1 is a protein called Myosin-7.

Chain	Residue	Modelled	Actual	Comment	Reference
А	1124	SER	ALA	variant	UNP P12883
А	1139	ASP	-	expression tag	UNP P12883
А	1140	TYR	-	expression tag	UNP P12883
А	1141	LYS	-	expression tag	UNP P12883
А	1142	ASP	-	expression tag	UNP P12883
А	1143	ASP	-	expression tag	UNP P12883
А	1144	ASP	-	expression tag	UNP P12883
А	1145	ASP	-	expression tag	UNP P12883
А	1146	LYS	-	expression tag	UNP P12883
В	1124	SER	ALA	variant	UNP P12883
В	1139	ASP	-	expression tag	UNP P12883
В	1140	TYR	-	expression tag	UNP P12883
В	1141	LYS	-	expression tag	UNP P12883
В	1142	ASP	-	expression tag	UNP P12883
В	1143	ASP	-	expression tag	UNP P12883
В	1144	ASP	-	expression tag	UNP P12883
В	1145	ASP	-	expression tag	UNP P12883
В	1146	LYS	-	expression tag	UNP P12883

There are 18 discrepancies between the modelled and reference sequences:

• Molecule 2 is a protein called Myosin light chain 1/3, skeletal muscle isoform.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	С	145	Total 1131	С 704	N 189	O 230	S 8	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	Е	148	Total 1157	C 722	N 193	0 234	S 8	0	0

• Molecule 3 is a protein called Myosin regulatory light chain 11.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	р	144	Total	С	Ν	0	S	0	0
5 D	144	1148	730	185	225	8	0	0	
2	Б	146	Total	С	Ν	0	S	0	0
J	Г	140	1159	736	186	229	8	0	0

• Molecule 4 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
4	А	1	Total Mg 1 1	0
4	В	1	Total Mg 1 1	0
4	D	1	Total Mg 1 1	0
4	F	1	Total Mg 1 1	0

• Molecule 5 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues	Atoms					AltConf
F	٨	1	Total	С	Ν	0	Р	0
0	D A	1	27	10	5	10	2	0
F	D	1	Total	С	Ν	0	Р	0
5	D	1	27	10	5	10	2	U

• Molecule 6 is PHOSPHATE ION (three-letter code: PO4) (formula: O_4P).

Mol	Chain	Residues	Atoms	AltConf
6	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0
6	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0

• Molecule 7 is 6-[[(1 {S})-1-phenylethyl]amino]-3-propan-2-yl-1 {H}-pyrimidine-2,4-d ione (three-letter code: XB2) (formula: $C_{15}H_{19}N_3O_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf	
7	Δ	1	Total C N	0	0
1	A	1	20 15 3	2	0
7	В	1	Total C N	0	0
'	D		20 15 3	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Myosin-7

• Molecule 1: Myosin-7

Chain B:	54%	25%	21%
GLY 54 54 55 54 54 81 819 819 819 820 822 822 822 823	U37 V37 041 044 645 F46 078 078 P81 F84 F84 F84 F84 F88 F88 F88	H97 H97 E98 F99 A100 V101 L102 L102	1114 1115 1120 1120 1122 1124 1124 1124 1127 1128 1127 1128
M130 [131 [131 [132 [132 [132 [135 [135 [135 [143] [143] [143] [143] [143] [145] [153 [155] [155] [155] [155] [155] [155] [155]	7164 1177 1178 1178 1178 1178 1178 1178 117	N15/ T188 K190 V191 1192 A196 V197 V197 1198	C202 ASP ASP ASP ASC ITYS ITYS GLN SER ASP GLN CTY CTS
G214 1220 1220 1224 1227 1235 1235 1235 1233 1233 1233 1233 1233	R243 R243 F244 1248 R249 R249 R249 R249 F26 1265 T265 T265 T266 C268 E268 E268	2271 2272 4276 4276 4276 8280 8281 1289	K294 L297 L297 L202 C316 V320 V320 L329
T342 T342 E344 E344 E344 F346 T346 T346 T346 T356 T356 T356 T356 T356 T356 T356	K383 K383 M388 K397 K397 K397 K403 K403 K403 K405 K405 K405 K405 K405 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K415 K410 K410 K410 K410 K410 K410 K410 K410	V420 1421 Y422 6425 6425 L427 L427 K429 K429	E433 R434 M435 F436 F436 F436 F436 E446 E448 E448 E448 E448
V459 P465 P465 P471 P471 P472 P475 P475 P475 P475 P485 P486 P486 P486 P486 P486 P486	4532 4493 4496 4496 4496 4496 4496 4496 4496	1524 M531 L534 1544 1547 1547 1552	F553 H556 H556 S560 S560 A583 L553 L553 (553) (555) (555)
K596 N597 N598 N598 N598 D599 D599 D500 N601 N601 N611 N611 N611 N611 N612 N612 N612 N61	V624 V624 ALA ALA ALA ALA ALA ALA CLV CLVS CLVS CLVS CLVS CLVS CLVS CLVS	GLIY SER SER SER V647 V647 V647 F669 F669	R671 C672 1673 1674 M690 M690 H691 L693 L693
C6995 N696 76697 76697 76697 1704 7705 7705 7705 7705 7710 7711 7711 7711	E733 E733 G733 L745 L746 Q755 A767 A767 E779 E779 E779	N/80 L/781 L/781 R/783 R/783 L/785 L/785 L/785 L/786 Q/789 A/790	07'91 87'92 87'93 87'94 77'94 77'95 17'96 17'96 17'96 17'99 17'99 17'99 17'99 17'99 17'99 17'99 17'90 17'90 17'90 17'910
L804 L805 E806 R806 R806 R825 N825 N825 N825 N825 N825 N825 S831 C831 C833 C833 C833 C833 C833 C833 C	P838 L839 L839 L834 E844 R844 F861 E861 E861 E861 E861 A865 R865 R870 R870	E874 M877 L881 K884 N885 R885 R885 R885 R888	L889 (880 (889 (889 (889 (889) (899) (889) (899)
007 000 1900 1913 1913 1913 1913 1913 1913	A.5. A.5. CLU THR THR THR TRR CLU CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	ARG TLE ASP ASP ASP CEU CLU CLU CLU THR THR ALA	LYS VAL GLU GLU GLU GLU HIS ALA ALA ALA ASN CLYS
VAL VAL VAL VAL VAL VAL VAL VAL	AND	ANNE ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ZYS ALA MSP LYS ALA ALA LYS JUU LYS JUU LYS JUU LUYS JUU LUYS LEU CLU ALA GLU ALA GLU ALA GLU ALA GLU ALA ASP ALA ASP TLE LEU
GLU ASP GLU GLU GLU GLU CLV CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ARA ARA GLU GLU GLU GLU GLU GLU GLU GLU ARA ARA ARA ARA ARA ARA ARA	GLU CLYS LLYS LEU ARG SER ASP TYR LYS ASP CYS	ASP ASP LYS LYS
• Molecule 2: Myosin light	ht chain $1/3$, skeletal mus	cle isoform	
Chain C:	PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0 PR0		22%

M185 8186 V187 1101 V1(Ξ D1

• Molecule 2: Myosin light chain 1/3, skeletal muscle isoform

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	197869	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	43.1	Depositor
Minimum defocus (nm)	1500	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV $(4k \ge 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ADP, PO4, XB2, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
INIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.36	0/7439	0.67	4/10009~(0.0%)
1	В	0.33	0/7439	0.64	2/10009~(0.0%)
2	С	0.28	0/1145	0.61	0/1534
2	Е	0.33	0/1172	0.71	0/1569
3	D	0.30	0/1169	0.63	0/1573
3	F	0.31	0/1179	0.67	0/1587
All	All	0.33	0/19543	0.65	6/26281~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	В	0	1
3	D	0	1
All	All	0	3

There are no bond length outliers.

All (6) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	164	TYR	CB-CG-CD2	-6.46	117.12	121.00
1	А	859	LEU	CA-CB-CG	5.46	127.85	115.30
1	В	130	TRP	C-N-CA	5.32	134.99	121.70
1	А	169	ARG	NE-CZ-NH2	5.18	122.89	120.30
1	А	912	LYS	N-CA-CB	5.16	119.88	110.60
1	В	135	THR	CA-CB-CG2	5.01	119.41	112.40

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
1	А	712	ARG	Sidechain
1	В	845	ARG	Sidechain
3	D	50	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	7296	0	7307	213	0
1	В	7296	0	7307	237	0
2	С	1131	0	1100	24	0
2	Ε	1157	0	1127	45	0
3	D	1148	0	1118	31	0
3	F	1159	0	1131	38	0
4	А	1	0	0	0	0
4	В	1	0	0	0	0
4	D	1	0	0	0	0
4	F	1	0	0	0	0
5	А	27	0	12	1	0
5	В	27	0	12	1	0
6	А	5	0	0	0	0
6	В	5	0	0	1	0
7	A	20	0	0	0	0
7	В	20	0	0	9	0
All	All	19295	0	19114	540	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 14.

All (540) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:164:TYR:CE1	7:B:1204:XB2:C15	2.43	1.01
1:B:774:GLU:OE2	7:B:1204:XB2:C16	2.16	0.94

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:774:GLU:OE2	7:B:1204:XB2:C15	2.21	0.88
1:A:126:ASN:HB3	1:A:675:PRO:HD3	1.57	0.86
1:B:181:GLY:HA2	1:B:238:ASN:HB2	1.60	0.83
1:A:720:GLN:HG2	2:C:134:LYS:HA	1.62	0.80
1:B:114:ILE:HG21	1:B:127:PRO:HG3	1.63	0.80
1:A:122:CYS:HB2	1:A:157:ILE:HD11	1.63	0.79
1:B:302:LEU:HD22	1:B:383:LYS:HG2	1.66	0.78
1:B:520:CYS:HA	1:B:523:LEU:HD12	1.66	0.78
1:A:123:VAL:HG11	1:A:698:VAL:HG11	1.65	0.77
1:A:356:ILE:HG23	1:A:428:ALA:HB1	1.66	0.77
1:B:164:TYR:CD1	7:B:1204:XB2:C14	2.66	0.77
1:A:269:GLU:HA	1:A:474:GLU:HG2	1.66	0.76
1:B:164:TYR:HE1	7:B:1204:XB2:C15	1.98	0.75
1:A:102:LEU:HD11	1:A:690:MET:HG3	1.70	0.74
1:B:840:LEU:O	1:B:844:GLU:HB2	1.88	0.73
2:C:146:ARG:HE	2:C:165:LEU:HD12	1.53	0.73
1:A:390:LEU:HD22	1:A:608:LEU:HG	1.71	0.72
1:A:175:LEU:HD21	1:A:662:LEU:HD21	1.71	0.72
3:F:43:ILE:HD12	3:F:76:PRO:HB3	1.70	0.72
1:B:135:THR:HG23	1:B:136:PRO:HD2	1.72	0.72
1:B:791:GLN:HA	2:E:78:ASN:ND2	2.05	0.72
1:A:894:GLU:HG2	1:B:894:GLU:HB3	1.71	0.72
1:A:463:ALA:HB1	1:A:478:ILE:HG13	1.73	0.71
1:A:549:LYS:HE2	1:A:575:ALA:HA	1.72	0.71
1:A:222:GLN:HG3	1:A:338:VAL:HG21	1.71	0.71
1:B:915:LEU:HA	1:B:918:LYS:HD2	1.74	0.70
1:B:821:PHE:CE2	3:F:159:ILE:HD13	2.27	0.69
1:B:179:GLU:HG2	1:B:465:PHE:HB3	1.73	0.69
1:B:841:LYS:O	1:B:845:ARG:HB3	1.92	0.69
1:A:146:LYS:NZ	1:A:774:GLU:HB3	2.08	0.68
1:A:751:ILE:HD11	1:A:776:MET:HE1	1.76	0.68
1:A:859:LEU:HG	1:B:859:LEU:HD23	1.75	0.68
1:B:165:MET:HA	1:B:172:GLN:HE21	1.59	0.68
1:B:796:LEU:HD11	2:E:164:LEU:HB2	1.76	0.68
1:B:534:LEU:HD13	1:B:594:LEU:HD23	1.74	0.68
2:E:56:ASP:OD1	2:E:62:LYS:HB3	1.94	0.67
1:B:143:ARG:HD3	1:B:198:ILE:HD12	1.75	0.67
3:F:92:GLY:O	3:F:95:PRO:HD3	1.95	0.67
1:B:779:GLU:HG2	1:B:783:ARG:HH11	1.60	0.67
1:A:486:GLN:HG2	1:A:671:ARG:HH12	1.58	0.67
1:B:164:TYR:CE1	7:B:1204:XB2:C14	2.78	0.66

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:755:GLN:HB3	1:A:769:LEU:HB2	1.77	0.65
1:A:821:PHE:HB2	3:D:159:ILE:HG23	1.78	0.65
1:B:243:ARG:HG3	1:B:272:ARG:HD2	1.78	0.65
1:B:483:GLU:HG3	1:B:517:LEU:HD13	1.78	0.65
1:B:719:ARG:HG3	1:B:730:ILE:HD13	1.79	0.65
1:B:102:LEU:HD13	1:B:690:MET:HG2	1.79	0.65
2:E:123:GLU:HA	2:E:126:VAL:HG12	1.80	0.64
3:D:116:LYS:HB2	3:D:139:TRP:HB3	1.80	0.64
3:D:123:LEU:HD21	3:D:135:ILE:HG21	1.79	0.64
1:A:715:TYR:HA	1:A:718:PHE:CE2	2.33	0.63
3:F:30:LYS:HD2	3:F:83:LEU:HD22	1.80	0.63
1:A:506:ILE:HD12	1:A:757:LYS:HB3	1.81	0.63
1:B:602:ASN:HB3	1:B:605:VAL:HG12	1.81	0.62
1:A:277:LEU:HD22	1:A:470:PHE:HB3	1.81	0.62
1:A:515:MET:CE	1:A:697:GLY:HA3	2.29	0.62
1:A:27:GLN:NE2	1:A:83:LYS:HG3	2.15	0.61
1:B:102:LEU:HD21	1:B:686:ASN:HB3	1.81	0.61
1:B:598:LYS:HG3	1:B:600:PRO:HD3	1.81	0.61
1:A:724:ILE:HG12	1:A:780:ARG:HG3	1.82	0.61
1:A:47:VAL:HA	1:A:103:TYR:OH	1.99	0.61
1:A:460:LEU:HD11	1:A:462:ILE:HD13	1.81	0.61
3:D:38:GLN:HE22	3:F:80:THR:CG2	2.14	0.61
1:A:114:ILE:HG21	1:A:127:PRO:HG3	1.81	0.61
1:A:361:ASN:HB3	1:A:380:GLU:HG2	1.83	0.61
1:A:88:GLU:HB3	1:A:152:PRO:HD3	1.82	0.60
1:B:22:GLU:HA	1:B:25:GLU:HG2	1.83	0.60
1:B:81:PRO:HG2	1:B:84:PHE:HD2	1.66	0.60
1:B:181:GLY:CA	1:B:238:ASN:HB2	2.30	0.60
1:B:278:LYS:HD3	1:B:316:GLY:HA2	1.82	0.60
1:B:785:ILE:HA	1:B:788:ILE:HG12	1.84	0.60
1:A:791:GLN:O	1:A:795:VAL:HG23	2.01	0.60
1:B:877:MET:O	1:B:881:LEU:HG	2.02	0.60
3:F:118:PHE:CE2	3:F:122:LEU:HD11	2.36	0.60
2:E:72:LEU:HD11	2:E:106:PHE:HE2	1.66	0.60
1:B:799:MET:HA	1:B:802:LYS:HE2	1.82	0.60
1:A:850:ALA:HA	1:A:853:LYS:HE2	1.84	0.60
1:A:402:PRO:HA	1:A:604:THR:HG21	1.84	0.60
1:B:139:VAL:HG11	1:B:197:VAL:HB	1.84	0.60
2:E:146:ARG:HG2	2:E:165:LEU:HD21	1.83	0.59
1:A:227:LEU:HD21	1:A:440:VAL:HG22	1.83	0.59
1:A:895:GLN:HA	1:A:898:LEU:HG	1.84	0.59

	i a se pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:175:LEU:HD23	1:B:485:LEU:HD11	1.85	0.58
1:A:915:LEU:HD11	1:B:915:LEU:HG	1.86	0.58
1:A:154:ILE:HD12	1:A:157:ILE:HD12	1.85	0.58
1:A:273:VAL:HG13	1:A:286:PHE:HZ	1.68	0.58
1:B:422:TYR:CZ	1:B:595:GLN:HB3	2.39	0.58
2:E:72:LEU:HD11	2:E:106:PHE:CE2	2.39	0.58
1:A:146:LYS:HZ3	1:A:774:GLU:HB3	1.68	0.58
1:A:126:ASN:HB3	1:A:675:PRO:CD	2.31	0.58
1:A:755:GLN:HA	1:A:766:LYS:HE2	1.85	0.58
3:D:39:ASN:HB2	3:D:41:ASP:OD2	2.04	0.58
1:B:358:HIS:HB3	1:B:380:GLU:HB3	1.84	0.58
1:A:301:LEU:HB3	1:A:303:ILE:HG23	1.86	0.57
1:B:446:THR:HG22	1:B:447:LEU:H	1.69	0.57
1:A:789:GLN:HE22	2:C:153:GLY:HA3	1.68	0.57
1:A:402:PRO:HD2	1:A:413:LYS:O	2.04	0.57
1:B:234:LYS:HG3	1:B:320:VAL:HG11	1.85	0.57
1:A:463:ALA:HB3	1:A:482:ASN:HB2	1.86	0.57
1:B:192:ILE:HD11	1:B:248:ILE:HG21	1.86	0.57
1:B:196:ALA:HB2	1:B:220:ILE:HG23	1.86	0.57
3:D:38:GLN:HE22	3:F:80:THR:HG23	1.68	0.57
1:A:870:ARG:HB2	1:B:870:ARG:NE	2.20	0.57
1:B:403:ARG:HD3	1:B:410:TYR:HB3	1.85	0.57
1:B:909:ILE:O	1:B:913:ILE:HG12	2.04	0.57
1:B:164:TYR:HE1	7:B:1204:XB2:C16	2.18	0.57
1:A:862:ALA:HA	1:A:865:LYS:HE3	1.86	0.56
1:A:298:LEU:HD21	1:A:305:ASN:HB2	1.87	0.56
1:A:175:LEU:HD23	1:A:485:LEU:HD11	1.87	0.56
1:B:890:GLN:O	1:B:894:GLU:HG2	2.04	0.56
1:A:785:ILE:HG23	1:A:789:GLN:NE2	2.21	0.56
1:B:821:PHE:CE2	3:F:159:ILE:HA	2.40	0.56
1:B:821:PHE:CZ	3:F:159:ILE:HA	2.40	0.56
1:A:197:VAL:O	1:A:201:ILE:HD12	2.06	0.56
1:B:705:CYS:O	1:B:767:ALA:HB2	2.05	0.56
1:A:837:LYS:HZ1	3:D:160:THR:HB	1.69	0.56
1:A:926:LEU:HD13	1:B:925:ARG:HG3	1.86	0.56
1:A:172:GLN:NE2	1:A:666:HIS:HB3	2.21	0.55
1:B:491:HIS:CE1	1:B:496:LEU:HB2	2.41	0.55
3:F:124:THR:HG22	3:F:130:PHE:HD2	1.71	0.55
3:D:47:GLU:HA	3:D:50:ARG:HG2	1.87	0.55
1:A:917:ALA:HA	1:A:920:LYS:HD2	1.88	0.55
1:B:831:LYS:HA	1:B:834:PHE:CE2	2.42	0.55

EMD-51719,	9GZ1
------------	------

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:597:ASN:HA	1:B:647:VAL:HG12	1.87	0.55
1:A:548:PHE:CD2	1:A:590:ILE:HD11	2.41	0.55
1:B:165:MET:HA	1:B:172:GLN:NE2	2.22	0.55
1:A:266:TYR:HB3	1:A:651:HIS:CE1	2.43	0.54
3:D:96:GLU:OE2	3:D:160:THR:HG21	2.07	0.54
1:B:484:LYS:HD2	1:B:521:ILE:HD13	1.89	0.54
1:B:498:GLN:HA	1:B:501:TYR:CD2	2.43	0.54
1:A:308:TYR:HA	1:A:314:SER:OG	2.08	0.54
1:B:15:TYR:CD2	1:B:132:PRO:HD2	2.42	0.54
3:F:53:PHE:CZ	3:F:61:VAL:HA	2.42	0.54
3:F:123:LEU:HD21	3:F:138:MET:SD	2.48	0.54
1:A:117:TYR:CZ	1:A:152:PRO:HA	2.43	0.54
1:A:174:ILE:HB	1:A:459:VAL:HG12	1.90	0.54
1:A:401:HIS:HB3	1:A:412:THR:CG2	2.38	0.54
1:A:479:ASN:HB3	1:A:581:HIS:ND1	2.22	0.54
1:B:348:SER:HB2	1:B:614:LEU:HD21	1.89	0.54
1:B:97:HIS:CE1	1:B:100:ALA:HB2	2.43	0.54
1:B:791:GLN:HA	2:E:78:ASN:HD21	1.71	0.54
1:A:6:MET:SD	1:A:17:ARG:HD2	2.47	0.53
1:B:833:TYR:CD1	1:B:839:LEU:HD21	2.43	0.53
1:B:268:LEU:HB3	1:B:433:GLU:OE1	2.08	0.53
3:D:134:GLU:HA	3:D:137:ASN:ND2	2.23	0.53
3:F:26:ILE:HA	3:F:29:PHE:HD2	1.71	0.53
1:A:460:LEU:HD23	1:A:485:LEU:HD22	1.90	0.53
3:D:155:ILE:O	3:D:159:ILE:HG12	2.07	0.53
1:B:534:LEU:HB3	1:B:597:ASN:HD22	1.73	0.53
2:C:63:ILE:HG23	2:C:101:ILE:HG23	1.91	0.53
1:A:172:GLN:HB2	1:A:457:ILE:HG12	1.91	0.53
1:B:271:SER:HA	1:B:429:LYS:HE2	1.91	0.53
1:B:692:GLN:HA	1:B:695:CYS:SG	2.49	0.53
3:D:22:ASP:HB2	3:D:25:GLN:OE1	2.08	0.53
1:A:73:GLU:HA	1:A:76:VAL:HG12	1.90	0.53
1:A:226:ALA:HB2	1:A:335:ALA:HB1	1.91	0.53
1:B:157:ILE:HD13	1:B:670:VAL:HG22	1.91	0.53
1:B:270:LYS:HB2	1:B:429:LYS:HB3	1.90	0.53
1:B:37:VAL:HG12	1:B:78:GLN:HA	1.90	0.52
1:B:914:GLN:HG2	1:B:918:LYS:HE3	1.91	0.52
2:C:138:GLY:HA2	2:C:177:TYR:CE1	2.45	0.52
2:E:128:GLY:O	2:E:131:VAL:HG22	2.09	0.52
3:D:116:LYS:HG2	3:D:144:PRO:HB3	1.90	0.52
3:F:118:PHE:O	3:F:122:LEU:HG	2.08	0.52

EMD-51719,	9GZ1
------------	------

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:922:MET:O	1:B:925:ARG:HG2	2.09	0.52
2:E:146:ARG:CG	2:E:165:LEU:HD21	2.39	0.52
1:A:355:ALA:O	1:A:359:PHE:HB2	2.10	0.52
1:A:375:PRO:HG3	1:A:396:LEU:HD13	1.92	0.52
1:B:465:PHE:CZ	1:B:583:ALA:HB3	2.45	0.52
1:A:489:PHE:HD2	1:A:669:PHE:CG	2.27	0.52
1:A:719:ARG:HG3	1:A:730:ILE:HD13	1.91	0.52
1:B:87:ILE:HG22	1:B:89:ASP:H	1.75	0.52
1:A:751:ILE:HG22	1:A:752:ASP:OD1	2.10	0.52
3:D:48:ASP:HA	3:D:51:ASP:OD2	2.09	0.52
3:F:53:PHE:CZ	3:F:65:GLU:HG3	2.45	0.52
1:B:81:PRO:HG2	1:B:84:PHE:CD2	2.44	0.51
1:B:552:LEU:HD12	1:B:556:HIS:CE1	2.46	0.51
1:B:794:GLY:HA2	2:E:73:ARG:HB3	1.92	0.51
1:B:611:LYS:O	1:B:611:LYS:HG3	2.10	0.51
1:B:121:PHE:HZ	1:B:698:VAL:HA	1.76	0.51
1:B:352:LEU:HD23	1:B:388:MET:HG2	1.93	0.51
2:C:144:GLU:O	2:C:148:VAL:HG22	2.09	0.51
1:A:306:ASN:HD21	1:A:308:TYR:HB2	1.75	0.51
1:B:796:LEU:HD13	2:E:160:GLU:HB3	1.92	0.51
2:E:64:THR:HB	2:E:67:GLN:OE1	2.11	0.51
1:A:795:VAL:HG22	2:C:187:VAL:CG1	2.41	0.51
1:A:915:LEU:HD11	1:B:915:LEU:CG	2.41	0.51
1:B:121:PHE:CB	1:B:669:PHE:HB2	2.40	0.51
1:A:157:ILE:HD13	1:A:670:VAL:HG22	1.92	0.51
1:A:753:HIS:HA	1:A:756:TYR:CE2	2.46	0.51
2:E:63:ILE:HD13	2:E:103:PHE:HA	1.93	0.51
1:A:460:LEU:HD23	1:A:485:LEU:HD13	1.91	0.50
1:A:489:PHE:HA	1:A:669:PHE:CZ	2.45	0.50
1:B:186:VAL:O	1:B:190:ARG:HG2	2.11	0.50
1:B:187:ASN:O	1:B:191:VAL:HG23	2.11	0.50
1:A:501:TYR:CD1	1:A:764:PHE:HE2	2.30	0.50
1:A:715:TYR:CD1	1:A:718:PHE:HE2	2.29	0.50
1:A:873:LEU:HD21	1:B:874:GLU:N	2.26	0.50
1:B:105:LEU:HD21	1:B:123:VAL:HG11	1.92	0.50
1:A:451:GLN:HG2	1:A:452:PRO:HD2	1.94	0.50
1:B:234:LYS:HD3	1:B:280:GLU:HA	1.93	0.50
1:B:446:THR:HG22	1:B:447:LEU:N	2.25	0.50
1:B:885:ASN:O	1:B:889:LEU:HG	2.12	0.50
1:B:727:PRO:HG3	2:E:127:GLU:OE1	2.12	0.50
1:A:15:TYR:C	1:A:113:MET:HG2	2.32	0.50

EMD-51719,	9GZ1
------------	------

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:D:94:ASP:HB2	3:D:99:ILE:HD11	1.93	0.50
1:A:33:LEU:HD12	1:A:33:LEU:H	1.77	0.50
1:A:238:ASN:HD21	5:A:1202:ADP:H4'	1.76	0.50
1:A:139:VAL:HG22	1:A:155:PHE:CE2	2.46	0.50
1:A:837:LYS:NZ	3:D:160:THR:HB	2.27	0.50
1:B:15:TYR:HB3	1:B:131:LEU:HD13	1.92	0.50
1:B:425:GLY:O	1:B:429:LYS:HG3	2.11	0.50
1:B:904:ARG:O	1:B:907:GLN:HG2	2.12	0.50
2:E:51:ALA:O	2:E:54:LEU:HG	2.11	0.50
1:A:916:GLU:O	1:A:919:VAL:HG12	2.11	0.50
2:E:158:GLU:O	2:E:162:GLU:HG2	2.11	0.50
1:A:285:ILE:O	1:A:289:ILE:HG12	2.12	0.49
1:B:746:LEU:HD23	1:B:749:LEU:HD12	1.94	0.49
1:A:126:ASN:O	1:A:675:PRO:HG3	2.12	0.49
2:E:49:LYS:O	2:E:53:LEU:HG	2.12	0.49
1:B:266:TYR:OH	1:B:658:LEU:HD13	2.11	0.49
2:E:83:GLU:O	2:E:87:VAL:HG23	2.11	0.49
1:A:15:TYR:CE1	1:A:112:TRP:HB2	2.48	0.49
1:B:781:LEU:O	1:B:785:ILE:HG23	2.12	0.49
1:A:756:TYR:HB3	1:A:769:LEU:CD2	2.42	0.49
1:B:493:MET:O	1:B:704:ILE:HG12	2.12	0.49
1:B:90:MET:SD	1:B:101:VAL:HG23	2.52	0.49
1:A:270:LYS:HE2	1:A:429:LYS:HB3	1.93	0.49
1:B:234:LYS:HB3	1:B:281:ARG:HB2	1.95	0.49
1:A:334:ASN:O	1:A:338:VAL:HG22	2.13	0.49
1:B:480:PHE:HE1	1:B:521:ILE:HG23	1.78	0.49
1:A:487:GLN:HB2	1:A:517:LEU:HD11	1.94	0.49
1:A:814:ILE:HG12	3:D:103:PHE:CZ	2.48	0.49
1:A:918:LYS:O	1:A:922:MET:HG3	2.12	0.49
1:B:134:TYR:CD1	1:B:190:ARG:HD2	2.48	0.49
1:B:164:TYR:HD1	7:B:1204:XB2:C14	2.25	0.49
1:B:182:ALA:HB1	1:B:672:CYS:C	2.33	0.49
1:B:446:THR:C	1:B:448:GLU:H	2.16	0.49
3:F:123:LEU:HG	3:F:130:PHE:CE2	2.48	0.49
1:A:863:LEU:HD11	1:B:859:LEU:HD21	1.94	0.49
3:D:138:MET:HG3	3:D:139:TRP:CD1	2.48	0.49
1:B:838:PRO:HG2	1:B:839:LEU:HD22	1.95	0.48
1:A:789:GLN:NE2	2:C:153:GLY:HA3	2.28	0.48
1:B:121:PHE:HB3	1:B:669:PHE:HB2	1.94	0.48
1:A:90:MET:SD	1:A:101:VAL:HG13	2.53	0.48
1:B:189:LYS:HA	1:B:224:ASN:ND2	2.28	0.48

EMD-51719,	9GZ1
------------	------

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:435:MET:HA	1:B:620:LEU:HD22	1.95	0.48
1:A:141:ALA:O	1:A:145:LYS:HD2	2.14	0.48
2:E:65:LEU:HD22	2:E:101:ILE:HG23	1.95	0.48
3:F:31:GLU:C	3:F:33:PHE:H	2.16	0.48
1:B:133:VAL:HG12	1:B:153:HIS:HE2	1.78	0.48
1:A:372:GLN:NE2	1:A:401:HIS:CE1	2.82	0.48
1:A:515:MET:HE2	1:A:515:MET:HB3	1.70	0.48
3:D:116:LYS:HE3	3:D:140:ALA:HB2	1.95	0.48
1:B:821:PHE:HE2	3:F:159:ILE:HD13	1.77	0.48
1:A:183:GLY:HA2	1:A:186:VAL:HG12	1.96	0.48
1:A:611:LYS:CD	2:E:137:ASN:HB3	2.43	0.48
1:A:901:ALA:CB	1:B:901:ALA:HB1	2.43	0.48
1:B:840:LEU:O	1:B:844:GLU:CB	2.60	0.48
1:B:270:LYS:O	1:B:429:LYS:HG2	2.14	0.48
1:A:84:PHE:O	1:A:87:ILE:HG23	2.13	0.47
1:A:883:GLU:HB3	1:B:884:LYS:NZ	2.29	0.47
1:B:800:GLU:OE2	1:B:804:LEU:HD11	2.15	0.47
1:B:861:GLU:OE2	1:B:865:LYS:HD3	2.14	0.47
1:A:603:GLU:HA	1:A:606:VAL:HG22	1.96	0.47
1:B:236:VAL:HG22	1:B:279:ALA:HB3	1.95	0.47
3:F:53:PHE:CE2	3:F:61:VAL:HA	2.49	0.47
1:A:122:CYS:CB	1:A:157:ILE:HD11	2.38	0.47
1:A:123:VAL:HG12	1:A:671:ARG:HB2	1.97	0.47
2:E:72:LEU:HA	2:E:75:LEU:HG	1.97	0.47
3:D:36:ILE:HG23	3:D:44:ILE:HD11	1.96	0.47
1:A:224:ASN:O	1:A:228:GLU:HG2	2.14	0.47
1:A:737:ASP:HB3	1:A:740:LYS:HB2	1.97	0.47
1:B:534:LEU:HB3	1:B:597:ASN:ND2	2.29	0.47
1:A:77:MET:HG3	1:A:97:HIS:CG	2.50	0.47
1:A:289:ILE:HG13	1:A:290:LEU:HD12	1.97	0.47
1:B:191:VAL:HG11	1:B:459:VAL:HG21	1.97	0.47
1:B:402:PRO:HB3	1:B:602:ASN:ND2	2.30	0.47
1:B:473:PHE:HB2	1:B:593:TRP:CG	2.50	0.47
1:B:862:ALA:HA	1:B:865:LYS:HE2	1.96	0.47
3:F:106:LEU:HD21	3:F:114:ILE:HD12	1.97	0.47
1:A:273:VAL:HG13	1:A:286:PHE:CZ	2.50	0.47
3:F:86:PHE:O	3:F:89:LYS:HG2	2.14	0.47
1:A:35:LYS:HA	1:A:51:ILE:HG22	1.98	0.46
1:A:780:ARG:NE	1:A:783:ARG:HD3	2.30	0.46
1:A:870:ARG:HB2	1:B:870:ARG:CZ	2.45	0.46
1:B:888:GLN:O	1:B:891:VAL:HG12	2.15	0.46

EMD-51719,	9GZ1
------------	------

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
2:C:138:GLY:HA2	2:C:177:TYR:HE1	1.80	0.46
3:D:120:GLU:HG2	3:D:139:TRP:CE3	2.51	0.46
1:B:231:GLY:HA3	1:B:244:PHE:CE1	2.50	0.46
1:B:402:PRO:HB3	1:B:602:ASN:HD21	1.80	0.46
1:B:434:ARG:HD2	1:B:621:PHE:CE2	2.50	0.46
1:B:155:PHE:HE1	1:B:190:ARG:O	1.99	0.46
1:B:833:TYR:HD1	1:B:839:LEU:HD21	1.80	0.46
2:E:83:GLU:HG3	2:E:116:ASN:HD22	1.80	0.46
2:E:142:GLY:HA2	2:E:145:LEU:HB3	1.97	0.46
1:B:406:VAL:O	1:B:406:VAL:HG23	2.16	0.46
1:B:524:ILE:HG22	1:B:531:MET:HG3	1.98	0.46
2:C:158:GLU:HA	2:C:161:VAL:HG22	1.98	0.46
2:E:66:SER:HB2	2:E:96:MET:O	2.16	0.46
3:F:116:LYS:O	3:F:120:GLU:HG3	2.16	0.46
1:A:234:LYS:HG2	1:A:239:ASP:HA	1.98	0.46
1:A:709:PHE:CE1	1:A:766:LYS:HG2	2.50	0.46
3:F:119:LEU:HA	3:F:122:LEU:HD12	1.98	0.46
3:F:24:THR:HG23	3:F:25:GLN:HG2	1.98	0.46
1:A:301:LEU:O	1:A:302:LEU:HG	2.15	0.46
1:A:484:LYS:HA	1:A:521:ILE:HD11	1.98	0.46
1:A:98:GLU:HB3	1:A:690:MET:HE3	1.97	0.46
1:B:177:THR:HG22	1:B:485:LEU:HD23	1.98	0.46
3:F:113:THR:HB	3:F:149:ASN:ND2	2.31	0.46
1:A:175:LEU:HD23	1:A:485:LEU:CD1	2.46	0.45
1:A:202:GLY:HA3	2:C:158:GLU:OE2	2.16	0.45
1:A:108:ARG:HB3	1:A:113:MET:O	2.16	0.45
1:A:290:LEU:HG	1:A:303:ILE:HD12	1.98	0.45
1:A:810:SER:HA	1:A:813:VAL:HG22	1.98	0.45
1:A:266:TYR:OH	1:A:658:LEU:HB2	2.16	0.45
1:A:480:PHE:CZ	1:A:484:LYS:HD2	2.52	0.45
1:B:899:ALA:HA	1:B:902:GLU:HG2	1.99	0.45
1:A:290:LEU:HD11	1:A:357:MET:CE	2.47	0.45
1:A:492:HIS:CD2	1:A:669:PHE:HE2	2.35	0.45
1:B:121:PHE:HD2	1:B:671:ARG:HG2	1.82	0.45
1:B:241:SER:HB2	6:B:1203:PO4:O3	2.16	0.45
1:B:421:ILE:HG13	1:B:422:TYR:N	2.32	0.45
2:E:80:THR:HG23	2:E:83:GLU:H	1.81	0.45
1:A:417:VAL:HA	1:A:420:VAL:HG12	1.99	0.45
1:B:115:TYR:CG	1:B:153:HIS:HA	2.51	0.45
1:A:184:LYS:HE3	1:A:463:ALA:O	2.17	0.45
1:B:828:PRO:HB2	1:B:830:MET:HG3	1.98	0.45

EMD-51719,	9GZ1
------------	------

	lous page	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:A:118:SER:HB3	1:A:702:ILE:HG13	1.99	0.45
1:B:102:LEU:HB2	1:B:690:MET:SD	2.57	0.45
1:B:135:THR:CG2	1:B:136:PRO:HD2	2.43	0.45
1:B:501:TYR:HB3	1:B:506:ILE:HB	1.98	0.45
2:E:117:LYS:HG3	2:E:118:ASP:H	1.82	0.45
1:A:281:ARG:HH12	1:A:325:ASP:CG	2.19	0.45
1:B:22:GLU:O	1:B:25:GLU:HG2	2.17	0.45
1:A:186:VAL:O	1:A:190:ARG:HG2	2.17	0.44
1:A:390:LEU:HD11	1:A:609:TYR:CE1	2.52	0.44
1:A:487:GLN:OE1	1:A:517:LEU:HG	2.17	0.44
1:A:772:LEU:HD23	1:A:776:MET:HE2	1.99	0.44
1:A:781:LEU:O	1:A:785:ILE:HG22	2.17	0.44
1:B:793:ARG:HH11	2:E:70:ASP:CG	2.20	0.44
1:B:826:ASN:C	1:B:828:PRO:HD3	2.37	0.44
1:B:845:ARG:HH12	1:B:846:GLU:HB3	1.82	0.44
1:B:120:LEU:HD11	1:B:710:PRO:CB	2.47	0.44
1:B:415:GLN:OE1	1:B:420:VAL:HB	2.17	0.44
3:F:124:THR:HA	3:F:130:PHE:CD2	2.52	0.44
1:B:916:GLU:HA	1:B:919:VAL:HG22	1.98	0.44
2:C:75:LEU:HG	2:C:76:GLY:N	2.33	0.44
1:A:267:LEU:HD23	1:A:477:CYS:SG	2.58	0.44
1:A:712:ARG:HD3	1:A:764:PHE:CE2	2.52	0.44
1:B:176:ILE:HG12	1:B:670:VAL:HB	1.99	0.44
1:B:787:ARG:O	1:B:790:ALA:HB3	2.18	0.44
1:B:795:VAL:HG11	2:E:184:ILE:O	2.18	0.44
1:A:326:ALA:O	1:A:330:MET:HG2	2.18	0.44
1:A:862:ALA:HB3	1:B:863:LEU:HD13	1.99	0.44
1:B:165:MET:HE3	1:B:252:PHE:HB2	1.99	0.44
3:F:17:VAL:HG22	3:F:21:PHE:CZ	2.52	0.44
3:F:130:PHE:HA	3:F:134:GLU:OE1	2.18	0.44
1:A:109:TYR:OH	1:A:127:PRO:HA	2.17	0.44
1:B:403:ARG:HH21	1:B:410:TYR:HB3	1.82	0.44
1:B:471:ASN:HA	1:B:475:GLN:HG3	1.99	0.44
1:B:718:PHE:CE2	1:B:745:LEU:HD23	2.52	0.44
1:B:427:LEU:HD11	1:B:605:VAL:HG21	1.98	0.44
2:E:92:SER:HB3	2:E:95:GLU:HG3	1.99	0.44
3:D:33:PHE:O	3:D:36:ILE:HG22	2.17	0.44
1:A:269:GLU:HG3	1:A:474:GLU:HB2	1.99	0.44
1:A:715:TYR:CD1	1:A:718:PHE:CE2	3.05	0.44
1:A:795:VAL:HG22	2:C:187:VAL:HG13	1.99	0.44
3:D:138:MET:HG3	3:D:139:TRP:HD1	1.81	0.44

EMD-51719,	9GZ1
------------	------

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:5:GLU:O	1:A:8:VAL:HG22	2.18	0.44
1:A:281:ARG:HB3	1:A:287:TYR:CE2	2.53	0.44
1:A:840:LEU:HD21	3:D:31:GLU:HB2	2.00	0.44
1:B:294:LYS:HD3	1:B:297:LEU:HD23	2.00	0.44
1:B:544:THR:OG1	1:B:547:THR:HG23	2.17	0.44
1:B:583:ALA:HA	1:B:695:CYS:CB	2.48	0.44
1:B:278:LYS:HD3	1:B:278:LYS:HA	1.77	0.43
1:A:192:ILE:HG23	1:A:220:ILE:HD12	1.99	0.43
1:A:237:ARG:NH1	1:A:674:ILE:HD13	2.32	0.43
1:A:812:LEU:O	1:A:815:GLN:HG2	2.18	0.43
1:A:872:GLU:OE2	1:A:876:LYS:HE3	2.18	0.43
1:B:227:LEU:HD11	1:B:263:ILE:HG21	1.99	0.43
1:B:234:LYS:O	1:B:280:GLU:HB2	2.18	0.43
1:A:821:PHE:CG	3:D:159:ILE:HD12	2.54	0.43
1:B:498:GLN:OE1	1:B:510:PHE:HA	2.18	0.43
3:F:122:LEU:HB3	3:F:126:GLN:HE22	1.84	0.43
1:A:776:MET:O	1:A:779:GLU:HG3	2.18	0.43
1:B:261:ALA:HB3	1:B:447:LEU:HD13	1.99	0.43
1:B:277:LEU:O	1:B:280:GLU:HG2	2.18	0.43
1:A:822:MET:HA	1:A:825:LYS:HZ3	1.84	0.43
1:B:84:PHE:HD1	1:B:87:ILE:HD11	1.83	0.43
1:B:840:LEU:HA	1:B:844:GLU:HG3	2.00	0.43
1:A:31:PHE:CE1	1:A:81:PRO:HA	2.54	0.43
1:A:611:LYS:HD2	2:E:137:ASN:HB3	2.01	0.43
1:B:127:PRO:HD2	5:B:1202:ADP:C5	2.53	0.43
2:C:181:VAL:O	2:C:185:MET:HG2	2.18	0.43
1:A:339:LEU:HD13	1:A:443:ILE:HD11	2.00	0.43
1:A:722:TYR:OH	1:A:746:LEU:HD11	2.18	0.43
1:A:805:LEU:HA	1:A:808:ARG:HE	1.84	0.43
1:B:237:ARG:NH1	1:B:674:ILE:HG21	2.33	0.43
3:D:95:PRO:O	3:D:98:VAL:HG22	2.18	0.43
3:D:120:GLU:OE2	3:D:136:LYS:HA	2.18	0.43
3:F:26:ILE:HG12	3:F:90:LEU:HD22	2.00	0.43
1:A:725:LEU:HD21	1:A:777:ARG:HA	2.01	0.43
1:B:346:LYS:HG2	1:B:350:TYR:CE2	2.54	0.43
1:B:359:PHE:O	1:B:362:MET:HG2	2.19	0.43
1:B:839:LEU:CD1	3:F:32:ALA:HA	2.49	0.43
2:C:170:ASP:H	2:C:175:ILE:CD1	2.32	0.43
2:E:146:ARG:HH21	2:E:146:ARG:HG3	1.83	0.43
1:A:288:GLN:HG3	1:A:329:LEU:CD1	2.48	0.43
1:A:715:TYR:HD1	1:A:718:PHE:CE2	2.37	0.43

EMD-51719,	9GZ1
------------	------

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:719:ARG:O	1:A:723:ARG:HB3	2.17	0.43	
1:A:905:CYS:SG	1:B:904:ARG:HD2	2.59	0.43	
1:B:770:LEU:HD11	7:B:1204:XB2:C17	2.48	0.43	
1:A:798:ARG:HD2	2:C:187:VAL:HG12	2.01	0.42	
1:B:272:ARG:HH22	1:B:280:GLU:CD	2.21	0.42	
1:B:791:GLN:O	1:B:795:VAL:HG22	2.18	0.42	
1:B:802:LYS:HA	1:B:805:LEU:HG	2.01	0.42	
1:B:265:THR:HG21	1:B:436:PHE:CE2	2.54	0.42	
1:B:359:PHE:CD1	1:B:362:MET:HE1	2.53	0.42	
1:A:364:PHE:HB2	1:A:417:VAL:HG23	2.01	0.42	
1:A:863:LEU:HD21	1:B:859:LEU:HD11	2.01	0.42	
1:B:5:GLU:O	1:B:8:VAL:HG22	2.19	0.42	
1:B:105:LEU:HD11	1:B:693:LEU:HD21	2.00	0.42	
1:B:235:THR:HA	1:B:280:GLU:HB2	2.02	0.42	
1:B:348:SER:HB3	1:B:614:LEU:HD11	2.00	0.42	
1:B:417:VAL:HA	1:B:420:VAL:HG12	2.00	0.42	
1:B:830:MET:O	1:B:834:PHE:HD2	2.02	0.42	
3:F:122:LEU:HB3	3:F:126:GLN:NE2	2.35	0.42	
1:B:831:LYS:HA	1:B:834:PHE:CD2	2.55	0.42	
2:E:138:GLY:HA2	2:E:177:TYR:CE1	2.54	0.42	
1:A:837:LYS:CG	1:A:838:PRO:HD3	2.50	0.42	
1:A:894:GLU:CG	1:B:894:GLU:HB3	2.47	0.42	
1:B:177:THR:CG2	1:B:485:LEU:HD23	2.50	0.42	
1:B:523:LEU:HD22	1:B:560:SER:OG	2.19	0.42	
2:E:182:LYS:HD3	2:E:182:LYS:HA	1.83	0.42	
1:A:719:ARG:HD3	1:A:738:SER:HA	2.01	0.42	
1:B:120:LEU:HD11	1:B:710:PRO:HB2	2.00	0.42	
1:B:485:LEU:HA	1:B:485:LEU:HD12	1.65	0.42	
2:C:68:VAL:HG21	2:C:101:ILE:HG21	2.02	0.42	
2:E:70:ASP:HA	2:E:73:ARG:HH21	1.85	0.42	
1:A:288:GLN:HB2	1:A:329:LEU:HB2	2.02	0.42	
1:A:356:ILE:HG12	1:A:428:ALA:HA	2.02	0.42	
1:B:98:GLU:CD	1:B:694:ARG:HE	2.23	0.42	
1:B:289:ILE:HA	1:B:329:LEU:HD13	2.02	0.42	
1:B:417:VAL:O	1:B:421:ILE:HG23	2.19	0.42	
2:E:58:THR:CG2	2:E:62:LYS:HB2	2.50	0.42	
1:A:47:VAL:HA	1:A:103:TYR:HH	1.84	0.42	
1:A:819:ARG:O	1:A:822:MET:HG3	2.20	0.42	
1:B:41:ASP:HB3	1:B:44:GLN:O	2.20	0.42	
1:A:462:ILE:O	1:A:463:ALA:HB2	2.20	0.42	
1:B:234:LYS:HG2	1:B:239:ASP:HA	2.00	0.42	

EMD-51719,	9GZ1
------------	------

Atom-1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:553:PHE:HA	1:B:557:LEU:HD23	2.02	0.42
2:E:138:GLY:HA2	2:E:177:TYR:HE1	1.85	0.42
3:D:116:LYS:HE3	3:D:140:ALA:N	2.35	0.42
1:B:131:LEU:C	1:B:133:VAL:H	2.24	0.41
1:B:779:GLU:HG2	1:B:783:ARG:HE	1.84	0.41
2:C:62:LYS:HE2	2:C:100:LYS:HE3	2.01	0.41
2:C:75:LEU:HG	2:C:76:GLY:H	1.85	0.41
3:F:119:LEU:O	3:F:123:LEU:HD22	2.20	0.41
1:A:226:ALA:HB2	1:A:335:ALA:CB	2.50	0.41
1:A:549:LYS:HB2	1:A:590:ILE:HD13	2.02	0.41
1:B:598:LYS:CG	1:B:600:PRO:HD3	2.49	0.41
1:B:699:LEU:HD12	1:B:699:LEU:H	1.85	0.41
3:D:23:GLN:O	3:D:27:GLN:HG2	2.19	0.41
1:A:520:CYS:O	1:A:523:LEU:HB3	2.20	0.41
1:A:591:ILE:H	1:A:591:ILE:HD12	1.85	0.41
1:B:115:TYR:CD2	1:B:153:HIS:HA	2.55	0.41
2:C:56:ASP:HA	2:C:67:GLN:NE2	2.35	0.41
1:A:46:PHE:CG	1:A:99:PRO:HB3	2.55	0.41
1:A:121:PHE:HB2	1:A:669:PHE:O	2.19	0.41
1:A:191:VAL:O	1:A:194:TYR:HB3	2.20	0.41
1:A:401:HIS:HB3	1:A:412:THR:HG23	2.03	0.41
1:A:549:LYS:HD2	1:A:575:ALA:HB1	2.01	0.41
1:A:789:GLN:OE1	2:C:149:LEU:HA	2.21	0.41
1:B:158:SER:HA	1:B:174:ILE:HD11	2.02	0.41
1:B:697:GLY:HA2	1:B:700:GLU:OE1	2.20	0.41
2:E:48:PHE:CE1	2:E:75:LEU:HB2	2.55	0.41
2:E:129:LEU:HA	2:E:132:PHE:CD2	2.55	0.41
3:D:124:THR:HB	3:D:129:ARG:NH2	2.35	0.41
3:D:154:ASN:O	3:D:158:VAL:HG22	2.20	0.41
3:F:35:VAL:HG12	3:F:35:VAL:O	2.21	0.41
1:B:788:ILE:HG22	2:E:125:PHE:CG	2.55	0.41
1:B:804:LEU:HA	1:B:807:ARG:HG2	2.03	0.41
1:B:397:LYS:HA	1:B:397:LYS:HD2	1.85	0.41
1:B:828:PRO:HD2	1:B:830:MET:HE3	2.03	0.41
2:E:79:PRO:HB3	2:E:116:ASN:HD21	1.85	0.41
1:A:15:TYR:CD1	1:A:112:TRP:HB2	2.56	0.41
1:A:266:TYR:CD1	1:A:462:ILE:HD11	2.55	0.41
1:A:502:LYS:HE3	1:A:502:LYS:HB3	1.92	0.41
1:A:710:PRO:HG3	1:A:767:ALA:HB2	2.02	0.41
1:B:19:SER:OG	1:B:21:LYS:HG3	2.20	0.41
1:B:276:GLN:HB3	1:B:280:GLU:HG3	2.03	0.41

	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:732:GLU:HG3	1:B:733:GLY:H	1.86	0.41
1:B:862:ALA:O	1:B:865:LYS:HG2	2.20	0.41
2:C:84:VAL:HA	2:C:87:VAL:HG22	2.03	0.41
1:A:402:PRO:HA	1:A:604:THR:CG2	2.50	0.41
1:A:97:HIS:CE1	1:A:100:ALA:HB2	2.56	0.41
1:A:269:GLU:HB3	1:A:283:TYR:OH	2.21	0.41
1:A:478:ILE:O	1:A:481:THR:HG22	2.20	0.41
1:A:579:LEU:HD23	1:A:581:HIS:NE2	2.35	0.41
1:A:795:VAL:HG22	2:C:187:VAL:HG11	2.03	0.41
1:B:31:PHE:HE1	1:B:33:LEU:HD13	1.84	0.41
1:B:115:TYR:HD1	1:B:124:THR:HG22	1.86	0.41
2:E:181:VAL:HA	2:E:184:ILE:HG12	2.01	0.41
1:A:175:LEU:HD22	1:A:669:PHE:CE1	2.56	0.41
1:A:290:LEU:HD11	1:A:357:MET:HE1	2.02	0.41
1:A:822:MET:HA	1:A:825:LYS:NZ	2.36	0.41
1:B:227:LEU:HD23	1:B:439:MET:SD	2.61	0.41
1:B:244:PHE:HA	1:B:267:LEU:O	2.21	0.41
1:B:405:LYS:HB3	1:B:410:TYR:CE2	2.56	0.41
1:B:824:VAL:C	1:B:826:ASN:H	2.24	0.41
2:C:177:TYR:O	2:C:181:VAL:HG12	2.21	0.41
2:E:57:ARG:H	2:E:62:LYS:CE	2.34	0.41
3:F:23:GLN:OE1	3:F:93:ALA:HB3	2.21	0.41
3:F:26:ILE:HD12	3:F:29:PHE:CD2	2.55	0.41
1:A:473:PHE:HA	1:A:593:TRP:CH2	2.55	0.40
1:A:823:GLY:O	1:A:827:TRP:HB2	2.22	0.40
1:B:127:PRO:C	1:B:129:LYS:H	2.25	0.40
1:B:612:SER:HB2	1:B:617:LEU:HD23	2.03	0.40
2:E:65:LEU:HD23	2:E:99:LYS:HB3	2.02	0.40
1:A:715:TYR:HA	1:A:718:PHE:CD2	2.56	0.40
1:B:121:PHE:HB2	1:B:669:PHE:HB2	2.04	0.40
1:B:178:GLY:N	1:B:184:LYS:HD3	2.36	0.40
1:B:342:THR:HG23	1:B:344:GLU:HG2	2.03	0.40
1:B:755:GLN:HA	1:B:766:LYS:HG3	2.03	0.40
1:A:756:TYR:HB3	1:A:769:LEU:HD22	2.03	0.40
1:B:249:ARG:HD2	1:B:456:PHE:CE1	2.56	0.40
1:B:497:GLU:HG3	1:B:501:TYR:CZ	2.56	0.40
1:B:780:ARG:HH11	1:B:783:ARG:HH22	1.70	0.40
2:E:70:ASP:HA	2:E:73:ARG:NH2	2.36	0.40
1:A:32:ASP:HB3	1:A:35:LYS:HB2	2.03	0.40
1:A:172:GLN:O	1:A:457:ILE:HA	2.21	0.40
1:A:835:LYS:O	1:A:838:PRO:HD2	2.21	0.40

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:B:46:PHE:CG	1:B:99:PRO:HB3	2.57	0.40
3:F:26:ILE:HB	3:F:90:LEU:HD13	2.03	0.40
3:F:78:ASN:O	3:F:81:VAL:HG22	2.22	0.40
1:A:840:LEU:HD12	1:A:840:LEU:HA	1.98	0.40
1:B:248:ILE:HG23	1:B:263:ILE:HD13	2.04	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	894/1145~(78%)	860 (96%)	34 (4%)	0	100	100
1	В	894/1145~(78%)	856 (96%)	36 (4%)	2(0%)	44	72
2	С	143/187~(76%)	136 (95%)	6 (4%)	1 (1%)	19	51
2	Е	146/187~(78%)	139~(95%)	7 (5%)	0	100	100
3	D	142/168~(84%)	131 (92%)	11 (8%)	0	100	100
3	F	144/168~(86%)	135 (94%)	9 (6%)	0	100	100
All	All	2363/3000 (79%)	2257 (96%)	103 (4%)	3 (0%)	50	78

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	838	PRO
2	С	63	ILE
1	В	128	TYR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	788/1001~(79%)	786 (100%)	2 (0%)	91	94
1	В	788/1001 (79%)	786 (100%)	2(0%)	91	94
2	С	122/153~(80%)	122 (100%)	0	100	100
2	Е	125/153~(82%)	125 (100%)	0	100	100
3	D	125/141~(89%)	125 (100%)	0	100	100
3	F	127/141~(90%)	127 (100%)	0	100	100
All	All	2075/2590~(80%)	2071 (100%)	4 (0%)	91	96

All (4) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	77	MET
1	А	661	ASN
1	В	21	LYS
1	В	830	MET

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	372	GLN
1	А	401	HIS
1	А	492	HIS
1	А	789	GLN
2	Е	116	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 4 are monoatomic - leaving 6 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain Dea		Tink	Bond lengths			Bond angles		
WIOI	туре	Unam	nes	nes Lilik	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
5	ADP	В	1202	4	24,29,29	1.01	2 (8%)	29,45,45	1.91	6 (20%)
7	XB2	В	1204	-	19,21,21	0.82	0	23,29,29	0.92	0
5	ADP	А	1202	4	24,29,29	0.94	1 (4%)	29,45,45	1.36	4 (13%)
6	PO4	В	1203	4	4,4,4	1.48	1 (25%)	6,6,6	0.46	0
6	PO4	А	1203	4	4,4,4	1.38	1 (25%)	6,6,6	0.52	0
7	XB2	А	1204	-	19,21,21	1.18	1 (5%)	23,29,29	1.01	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	ADP	В	1202	4	-	4/12/32/32	0/3/3/3
7	XB2	А	1204	-	-	2/10/12/12	0/2/2/2
7	XB2	В	1204	-	-	0/10/12/12	0/2/2/2
5	ADP	А	1202	4	-	2/12/32/32	0/3/3/3

All (6) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
6	В	1203	PO4	P-01	2.61	1.57	1.50
7	А	1204	XB2	C07-N03	-2.59	1.36	1.40
5	А	1202	ADP	C5-C4	2.42	1.47	1.40
6	А	1203	PO4	P-01	2.39	1.56	1.50
5	В	1202	ADP	C5-C4	2.36	1.47	1.40
5	В	1202	ADP	C2-N3	2.06	1.35	1.32

All (10) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	В	1202	ADP	O4'-C1'-C2'	-7.27	96.30	106.93
5	А	1202	ADP	PA-O3A-PB	-3.78	119.86	132.83
5	А	1202	ADP	N3-C2-N1	-3.31	123.50	128.68
5	В	1202	ADP	PA-O3A-PB	-2.98	122.62	132.83
5	В	1202	ADP	N3-C2-N1	-2.92	124.11	128.68
5	В	1202	ADP	C3'-C2'-C1'	2.84	105.25	100.98
5	А	1202	ADP	C4-C5-N7	-2.61	106.67	109.40
5	В	1202	ADP	N6-C6-N1	2.41	123.58	118.57
5	В	1202	ADP	O3B-PB-O2B	2.15	115.87	107.64
5	A	1202	ADP	O3B-PB-O2B	2.09	115.61	107.64

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
5	В	1202	ADP	C5'-O5'-PA-O3A
7	А	1204	XB2	C18-C11-N10-C09
5	А	1202	ADP	PB-O3A-PA-O2A
5	В	1202	ADP	C5'-O5'-PA-O1A
7	А	1204	XB2	C12-C11-N10-C09
5	В	1202	ADP	C3'-C4'-C5'-O5'
5	А	1202	ADP	PB-O3A-PA-O1A
5	В	1202	ADP	PA-O3A-PB-O1B

All (8) torsion outliers are listed below:

There are no ring outliers.

4 monomers are involved in 12 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	В	1202	ADP	1	0
7	В	1204	XB2	9	0
5	А	1202	ADP	1	0
6	В	1203	PO4	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

