

Full wwPDB X-ray Structure Validation Report (i)

Jul 9, 2025 – 10:26 am BST

PDB ID : 9GP9 / pdb 00009gp9

Title : Crystal Structure of Polyphosphate kinase 2-II (PPK2-II) from Lysinibacillus

fusiformis bound to ADP (form I)

Authors: Saleem-Batcha, R.; Keppler, M.; Kuge, M.; Andexer, J.N.

Deposited on : 2024-09-07

Resolution : 2.88 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4-5-2 with Phenix2.0rc1

Mogul : 1.8.4, CSD as541be (2020)

Xtriage (Phenix) : 2.0rc1

EDS : 3.0

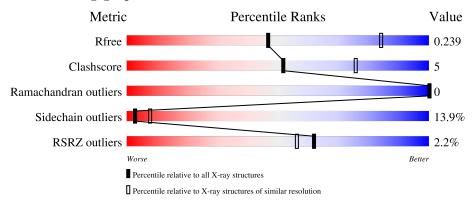
buster-report : 1.1.7 (2018)

Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023)

CCP4 : 9.0.003 (Gargrove)

Density-Fitness : 1.0.11

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.44

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 2.88 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

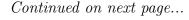
Metric	Whole archive $(\# \mathrm{Entries})$	$\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries},{\rm resolution\ range}(\mathring{\rm A})) \end{array}$
R_{free}	164625	3316 (2.90-2.86)
Clashscore	180529	3609 (2.90-2.86)
Ramachandran outliers	177936	3529 (2.90-2.86)
Sidechain outliers	177891	3532 (2.90-2.86)
RSRZ outliers	164620	3319 (2.90-2.86)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Qua	lity of chain
1	A	289	53%	13% • • 29%
1	В	289	53%	12% • 31%

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 3429 atoms, of which 0 are hydrogens and 0 are deuteriums.


In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

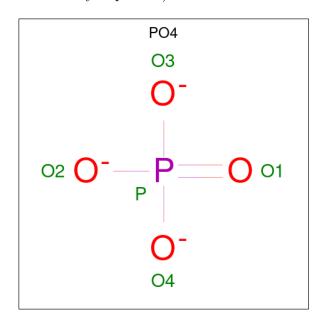
• Molecule 1 is a protein called Polyphosphate kinase.

\mathbf{Mol}	Chain	Residues		\mathbf{At}	oms			ZeroOcc	AltConf	Trace
1	A	204	Total 1694	C 1098	N 298	O 294	S 4	0	0	0
1	В	198	Total 1647		N 292	O 283	S 4	0	0	0

There are 46 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	1	MET	-	initiating methionine	UNP A0A1E4R1F9
A	2	GLY	-	expression tag	UNP A0A1E4R1F9
A	3	SER	-	expression tag	UNP A0A1E4R1F9
A	4	SER	-	expression tag	UNP A0A1E4R1F9
A	5	HIS	-	expression tag	UNP A0A1E4R1F9
A	6	HIS	-	expression tag	UNP A0A1E4R1F9
A	7	HIS	-	expression tag	UNP A0A1E4R1F9
A	8	HIS	-	expression tag	UNP A0A1E4R1F9
A	9	HIS	-	expression tag	UNP A0A1E4R1F9
A	10	HIS	-	expression tag	UNP A0A1E4R1F9
A	11	SER	-	expression tag	UNP A0A1E4R1F9
A	12	SER	-	expression tag	UNP A0A1E4R1F9
A	13	GLY	-	expression tag	UNP A0A1E4R1F9
A	14	LEU	-	expression tag	UNP A0A1E4R1F9
A	15	VAL	-	expression tag	UNP A0A1E4R1F9
A	16	PRO	-	expression tag	UNP A0A1E4R1F9
A	17	ARG	-	expression tag	UNP A0A1E4R1F9
A	18	GLY	-	expression tag	UNP A0A1E4R1F9
A	19	SER	-	expression tag	UNP A0A1E4R1F9
A	20	HIS	-	expression tag	UNP A0A1E4R1F9
A	44	GLU	LYS	conflict	UNP A0A1E4R1F9
A	243	ILE	VAL	conflict	UNP A0A1E4R1F9
A	282	ASN	ASP	conflict	UNP A0A1E4R1F9
В	1	MET	-	initiating methionine	UNP A0A1E4R1F9
В	2	GLY	-	expression tag	UNP A0A1E4R1F9

 $Continued\ from\ previous\ page...$


Chain	Residue	Modelled	Actual	Comment	Reference
В	3	SER	-	expression tag	UNP A0A1E4R1F9
В	4	SER	-	expression tag	UNP A0A1E4R1F9
В	5	HIS	-	expression tag	UNP A0A1E4R1F9
В	6	HIS	-	expression tag	UNP A0A1E4R1F9
В	7	HIS	=	expression tag	UNP A0A1E4R1F9
В	8	HIS	-	expression tag	UNP A0A1E4R1F9
В	9	HIS	-	expression tag	UNP A0A1E4R1F9
В	10	HIS	-	expression tag	UNP A0A1E4R1F9
В	11	SER	-	expression tag	UNP A0A1E4R1F9
В	12	SER	-	expression tag	UNP A0A1E4R1F9
В	13	GLY	-	expression tag	UNP A0A1E4R1F9
В	14	LEU	=	expression tag	UNP A0A1E4R1F9
В	15	VAL	-	expression tag	UNP A0A1E4R1F9
В	16	PRO	-	expression tag	UNP A0A1E4R1F9
В	17	ARG	-	expression tag	UNP A0A1E4R1F9
В	18	GLY	-	expression tag	UNP A0A1E4R1F9
В	19	SER	-	expression tag	UNP A0A1E4R1F9
В	20	HIS	=	expression tag	UNP A0A1E4R1F9
В	44	GLU	LYS	conflict	UNP A0A1E4R1F9
В	243	ILE	VAL	conflict	UNP A0A1E4R1F9
В	282	ASN	ASP	conflict	UNP A0A1E4R1F9

• Molecule 2 is ADENOSINE-5'-DIPHOSPHATE (CCD ID: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$) (labeled as "Ligand of Interest" by depositor).

ſ	Mol	Chain	Residues		Ato	oms			ZeroOcc	AltConf
Ī	2	Λ	1	Total	С	N	О	Р	0	0
	2	А	1	27	10	5	10	2	0	
Ī	2	D	1	Total	С	N	О	Р	0	0
	2	Б	1	27	10	5	10	2	U	0

• Molecule 3 is PHOSPHATE ION (CCD ID: PO4) (formula: O_4P) (labeled as "Ligand of Interest" by depositor).

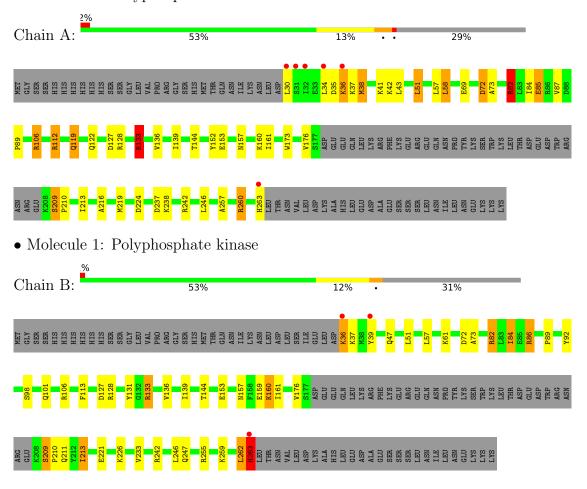
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	1	Total O P	0	0
	Λ	1	5 4 1	U	U
3	A	1	Total O P	0	0
	11	1	5 4 1	U	U
3	A	1	Total O P	0	0
	11	1	5 4 1	U	U
3	A	1	Total O P	0	0
	11	1	5 4 1	U	U
3	В	1	Total O P	0	0
	Ъ	1	5 4 1	Ů	U
3	В	1	Total O P	0	0
	ם	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	2	Total O 2 2	0	0

Continued on next page...

Continued from previous page...


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Polyphosphate kinase

4 Data and refinement statistics (i)

Property	Value	Source
Space group	I 41 2 2	Depositor
Cell constants	109.78Å 109.78Å 286.68Å	Donositon
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Resolution (Å)	48.39 - 2.88	Depositor
Resolution (A)	48.39 - 2.88	EDS
% Data completeness	98.6 (48.39-2.88)	Depositor
(in resolution range)	98.6 (48.39-2.88)	EDS
R_{merge}	0.09	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.25 (at 2.86Å)	Xtriage
Refinement program	REFMAC 5.8.0425	Depositor
D D.	0.190 , 0.244	Depositor
R, R_{free}	0.196 , 0.239	DCC
R_{free} test set	1004 reflections (5.00%)	wwPDB-VP
Wilson B-factor (Å ²)	98.9	Xtriage
Anisotropy	0.090	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.31, 59.7	EDS
L-test for twinning ²	$ < L >=0.51, < L^2>=0.34$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	3429	wwPDB-VP
Average B, all atoms (Å ²)	93.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.12% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PO4, ADP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles		
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	A	0.71	0/1733	1.26	$11/2332 \ (0.5\%)$	
1	В	0.64	0/1686	1.21	$4/2268 \; (0.2\%)$	
All	All	0.68	0/3419	1.24	$15/4600 \ (0.3\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a maintenain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	A	0	5
1	В	0	4
All	All	0	9

There are no bond length outliers.

All (15) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$Ideal(^{o})$
1	A	106	ARG	NE-CZ-NH2	6.36	124.92	119.20
1	В	127	ASP	CA-CB-CG	6.32	118.92	112.60
1	A	237	ASP	CA-CB-CG	5.89	118.49	112.60
1	A	85	GLU	N-CA-CB	5.81	118.60	109.94
1	A	127	ASP	CA-CB-CG	5.63	118.23	112.60
1	A	133	ARG	CG-CD-NE	-5.57	99.75	112.00
1	A	112	ARG	CB-CA-C	-5.49	99.50	110.42
1	A	260	ARG	N-CA-C	-5.42	102.50	110.52
1	A	224	ASP	CA-CB-CG	5.38	117.98	112.60
1	A	152	TYR	N-CA-CB	5.31	117.86	109.94
1	В	263	HIS	CA-CB-CG	5.25	119.05	113.80
1	В	259	LYS	CB-CA-C	5.14	119.33	110.79

Continued on next page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(^{o})$	$\operatorname{Ideal}({}^{o})$
1	A	106	ARG	CD-NE-CZ	5.14	131.59	124.40
1	В	113	PHE	CA-CB-CG	-5.14	108.66	113.80
1	A	37	LYS	N-CA-CB	5.03	118.98	110.49

There are no chirality outliers.

All (9) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	A	106	ARG	Sidechain
1	A	112	ARG	Sidechain
1	A	128	ARG	Sidechain
1	A	133	ARG	Sidechain
1	A	82	ARG	Sidechain
1	В	106	ARG	Sidechain
1	В	128	ARG	Sidechain
1	В	133	ARG	Sidechain
1	В	255	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	1694	0	1723	19	0
1	В	1647	0	1675	14	0
2	A	27	0	12	0	0
2	В	27	0	12	3	0
3	A	20	0	0	0	0
3	В	10	0	0	0	0
4	A	2	0	0	1	0
4	В	2	0	0	2	0
All	All	3429	0	3422	34	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (34) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
		distance (Å)	overlap (Å)
1:A:263:HIS:ND1	4:A:401:HOH:O	2.26	0.68
2:B:301:ADP:H5'2	4:B:401:HOH:O	1.95	0.65
1:B:262:LEU:O	1:B:263:HIS:C	2.42	0.63
1:B:82:ARG:HG2	1:B:242:ARG:HD3	1.84	0.59
1:B:47:GLN:HB3	1:B:86:ARG:HG3	1.85	0.59
1:B:98:SER:HA	2:B:301:ADP:H5'1	1.85	0.57
1:A:35:ASP:OD2	1:A:35:ASP:N	2.40	0.55
1:B:209:SER:N	1:B:210:PRO:HD2	2.24	0.52
1:A:157:ASN:O	1:A:161:ILE:HG13	2.10	0.51
1:B:157:ASN:O	1:B:161:ILE:HG13	2.10	0.51
1:B:36:LYS:O	1:B:39:TYR:HB3	2.11	0.51
1:A:209:SER:N	1:A:210:PRO:HD2	2.26	0.50
2:B:301:ADP:C5'	4:B:401:HOH:O	2.58	0.49
1:A:89:PRO:HG2	1:B:84:ILE:HD11	1.94	0.48
1:A:72:ASP:OD2	1:A:72:ASP:N	2.45	0.48
1:B:131:TYR:OH	1:B:159:GLU:OE2	2.31	0.48
1:A:257:ALA:O	1:A:260:ARG:O	2.33	0.47
1:A:51:LEU:HD23	1:A:87:VAL:HA	1.97	0.47
1:B:210:PRO:O	1:B:213:ILE:HG13	2.14	0.47
1:A:82:ARG:HG2	1:A:242:ARG:HD3	1.96	0.46
1:A:119:GLN:HG3	1:A:122:GLN:HG3	1.99	0.44
1:A:216:ALA:O	1:A:219:MET:HB3	2.17	0.44
1:A:210:PRO:O	1:A:213:ILE:HG13	2.16	0.44
1:B:72:ASP:O	1:B:73:ALA:HB3	2.18	0.44
1:A:72:ASP:O	1:A:73:ALA:HB3	2.18	0.44
1:B:209:SER:O	1:B:213:ILE:HG23	2.18	0.43
1:A:36:LYS:O	1:A:38:MET:N	2.49	0.43
1:B:89:PRO:HA	1:B:92:TYR:CE2	2.54	0.42
1:A:69:GLU:O	1:A:173:TRP:HA	2.20	0.41
1:A:238:LYS:O	1:A:242:ARG:HG3	2.20	0.41
1:A:58:LEU:HD13	1:A:58:LEU:HA	1.94	0.41
1:A:42:LYS:HA	1:A:42:LYS:HD2	1.72	0.40
1:B:160:LYS:HB3	1:B:160:LYS:HE2	1.94	0.40
1:A:34:LEU:HD23	1:A:34:LEU:HA	1.87	0.40

There are no symmetry-related clashes. $\,$

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	voured Allowed		Percentiles	
1	A	200/289~(69%)	194 (97%)	6 (3%)	0	100	100
1	В	194/289~(67%)	189 (97%)	5 (3%)	0	100	100
All	All	394/578~(68%)	383 (97%)	11 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Percentiles		
1	A	176/256~(69%)	154 (88%)	22 (12%)	3 10	
1	В	170/256 (66%)	144 (85%)	26 (15%)	2 6	
All	All	346/512 (68%)	298 (86%)	48 (14%)	3 8	

All (48) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	30	LEU
1	A	36	LYS
1	A	38	MET
1	A	41	LYS
1	A	43	LEU
1	A	51	LEU
1	A	57	LEU
1	A	58	LEU

Continued on next page...

Continued from previous page...

Mol	Chain	Res	$egin{array}{c} ext{rus } page \ ext{ } ext{ }$
1	A	72	ASP
1	A	82	ARG
1	A	84	ILE
1	A	85	GLU
1	A	119	GLN
1	A	133	ARG
1	A	136	VAL
1	A	139	ILE
1	A	144	THR
1	A	153	GLU
1	A	160	LYS
1	A	176	VAL
1	A	209	SER
1	A	246	LEU
1	В	36	LYS
1	В	37	LYS
1	В	51	LEU
1	В	57	LEU
1	В	61	LYS
1	В	82	ARG
1	В	84	ILE
1	В	86	ARG
1	В	101	GLN
1	В	133	ARG
1	В	136	VAL
1	В	139	ILE
1	В	144	THR
1	В	153	GLU
1	В	160	LYS
1	В	176	VAL
1	В	209	SER
1	В	211	GLN
1	В	213	ILE
1	В	221	GLU
1	В	226	LYS
1	В	233	VAL
1	В	246	LEU
1	В	247	GLN
1	В	262	LEU
1	В	263	HIS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (10) such sidechains are listed below:

Mol	Chain	Res	Type
1	A	54	GLN
1	A	101	GLN
1	A	108	ASN
1	A	227	ASN
1	A	244	GLN
1	A	252	HIS
1	В	54	GLN
1	В	101	GLN
1	В	227	ASN
1	В	236	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

8 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type		Chain	Chain	Chain	Chain	Res	Link	Bond lengths			Bond angles		
IVIOI	туре	Chain	rtes	Lilik	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2			
3	PO4	A	305	-	4,4,4	1.05	0	6,6,6	0.54	0			
3	PO4	A	302	-	4,4,4	0.50	0	6,6,6	0.60	0			
2	ADP	A	301	-	24,29,29	0.77	0	29,45,45	0.82	0			
2	ADP	В	301	-	24,29,29	0.64	0	29,45,45	0.78	0			
3	PO4	В	303	-	4,4,4	1.02	0	6,6,6	0.70	0			

Mol Type Ch		Chain Res		Chain	Res	Link	Во	ond leng	$ ag{ths}$	В	ond ang	cles
MIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2		
3	PO4	A	304	-	4,4,4	1.06	0	6,6,6	0.49	0		
3	PO4	В	302	-	4,4,4	0.84	0	6,6,6	0.61	0		
3	PO4	A	303	-	4,4,4	1.14	0	6,6,6	0.63	0		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	ADP	A	301	-	-	5/12/32/32	0/3/3/3
2	ADP	В	301	-	-	6/12/32/32	0/3/3/3

There are no bond length outliers.

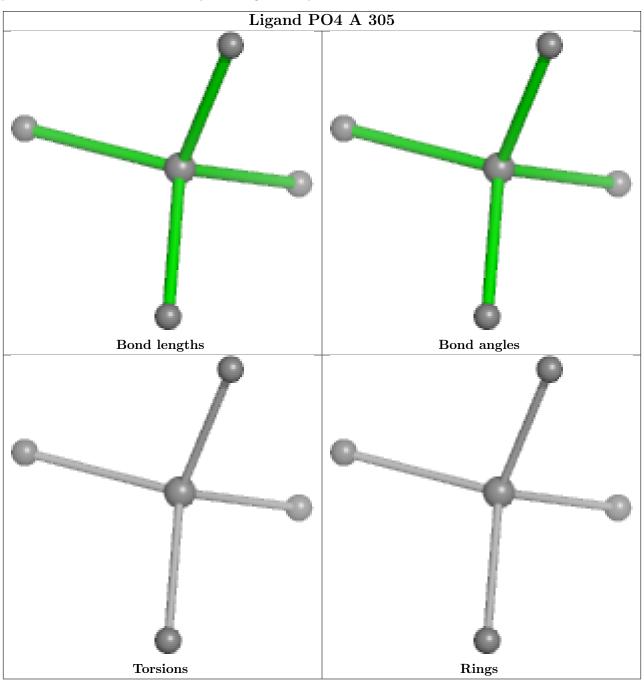
There are no bond angle outliers.

There are no chirality outliers.

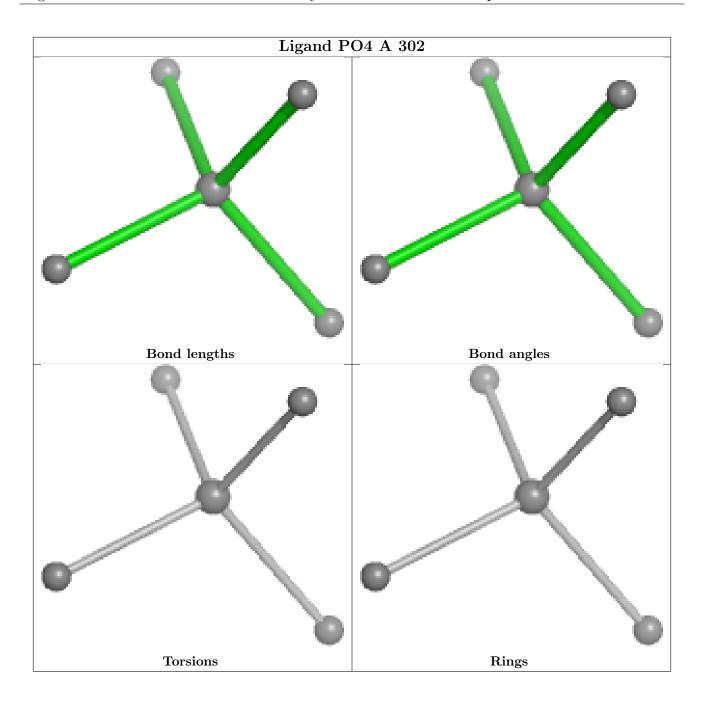
All (11) torsion outliers are listed below:

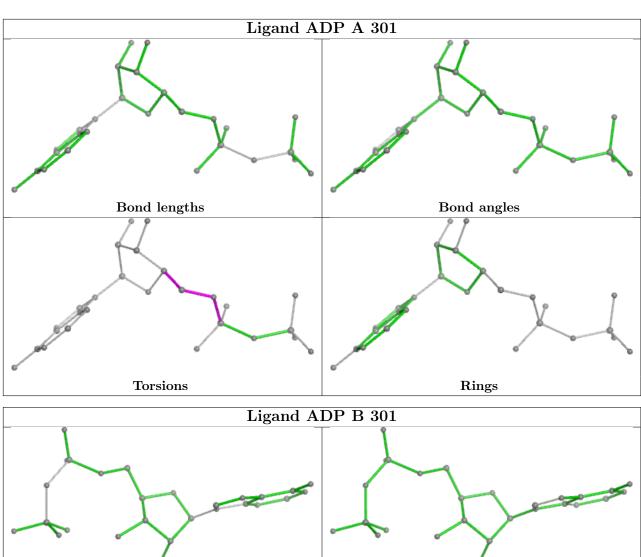
Mol	Chain	Res	Type	Atoms
2	A	301	ADP	C5'-O5'-PA-O3A
2	A	301	ADP	C4'-C5'-O5'-PA
2	В	301	ADP	PA-O3A-PB-O3B
2	В	301	ADP	PB-O3A-PA-O5'
2	В	301	ADP	C5'-O5'-PA-O2A
2	В	301	ADP	C5'-O5'-PA-O3A
2	A	301	ADP	C3'-C4'-C5'-O5'
2	В	301	ADP	O4'-C4'-C5'-O5'
2	В	301	ADP	PA-O3A-PB-O1B
2	A	301	ADP	O4'-C4'-C5'-O5'
2	A	301	ADP	C5'-O5'-PA-O1A

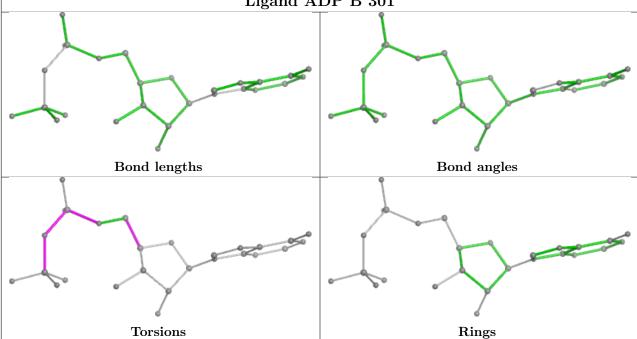
There are no ring outliers.

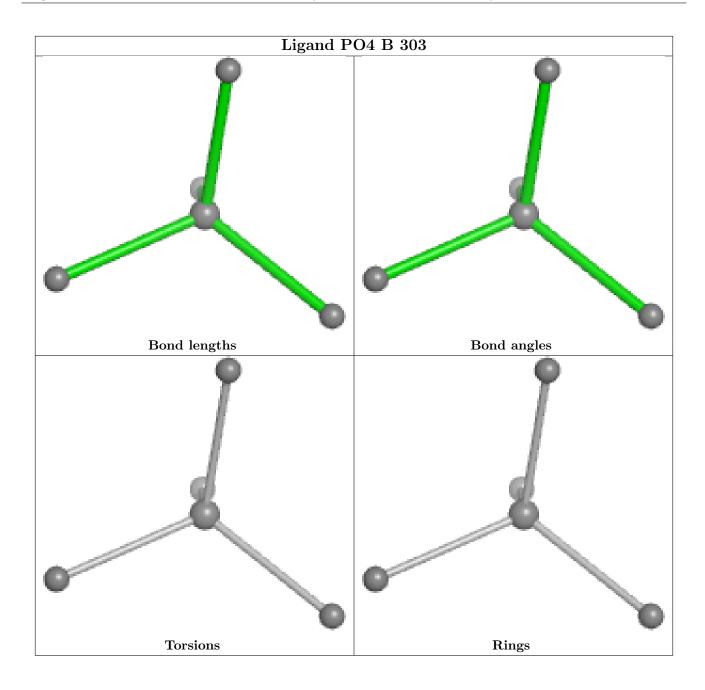

1 monomer is involved in 3 short contacts:

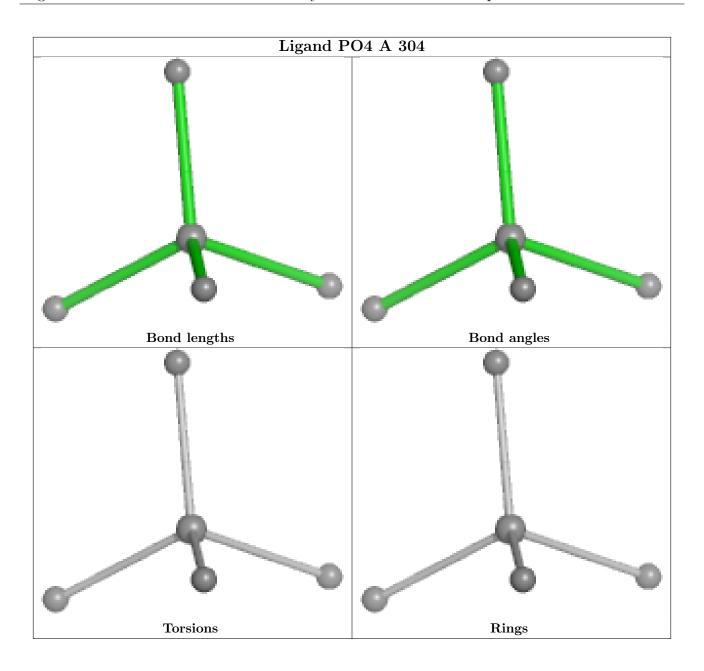
Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	В	301	ADP	3	0

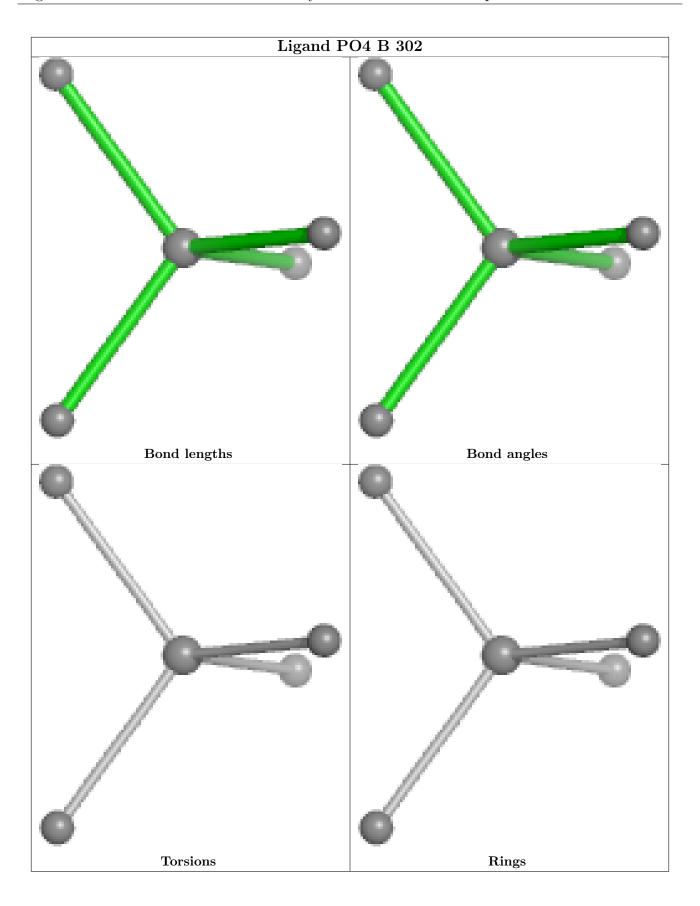

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will

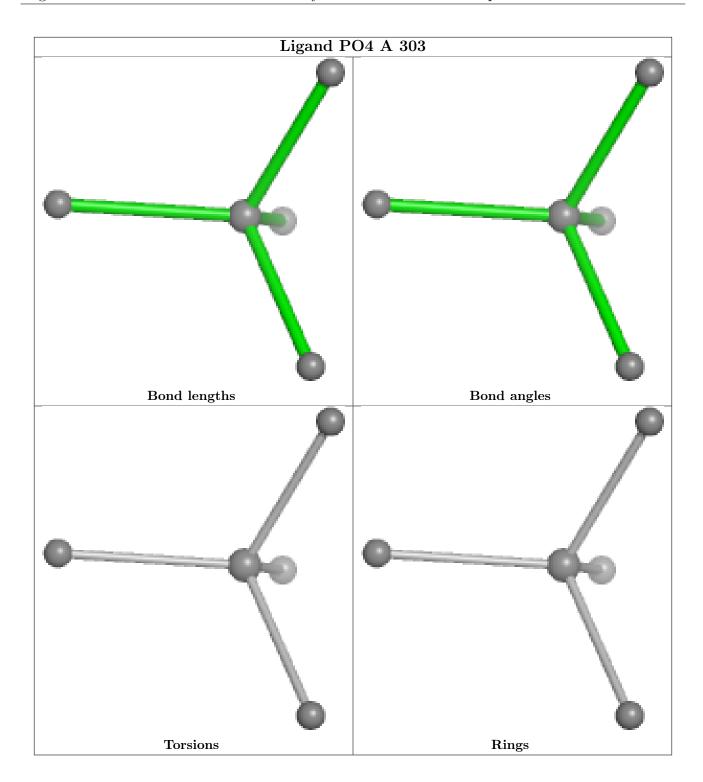

also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.











5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	$\#\mathrm{RSRZ}{>}2$	$OWAB(Å^2)$	Q<0.9
1	A	204/289 (70%)	-0.21	6 (2%) 54 49	64, 81, 126, 208	0
1	В	198/289 (68%)	-0.33	3 (1%) 71 66	69, 91, 137, 159	0
All	All	402/578 (69%)	-0.27	9 (2%) 62 56	64, 86, 134, 208	0

All (9) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	A	30	LEU	5.0
1	A	32	ILE	4.7
1	В	263	HIS	4.3
1	A	263	HIS	3.3
1	A	36	LYS	2.9
1	В	36	LYS	2.9
1	A	34	LEU	2.4
1	В	39	TYR	2.4
1	A	31	SER	2.2

6.2 Non-standard residues in protein, DNA, RNA chains (i)

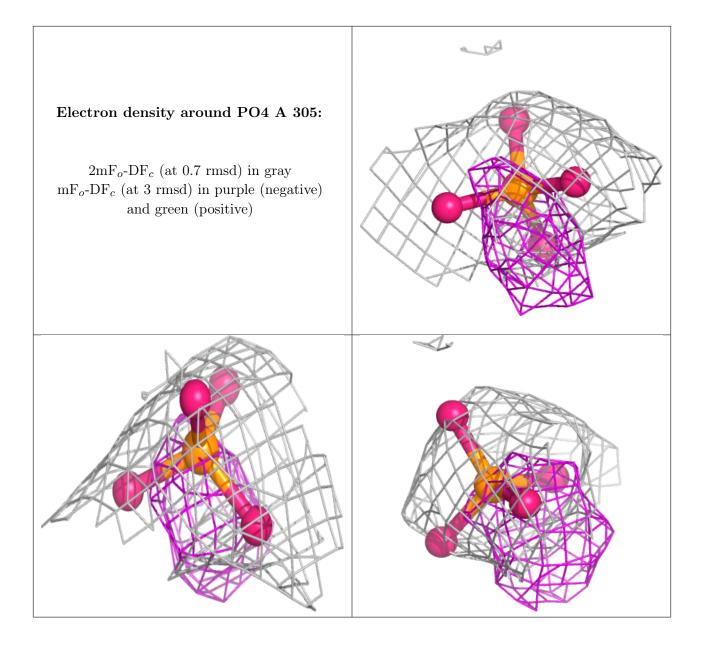
There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no oligosaccharides in this entry.

6.4 Ligands (i)

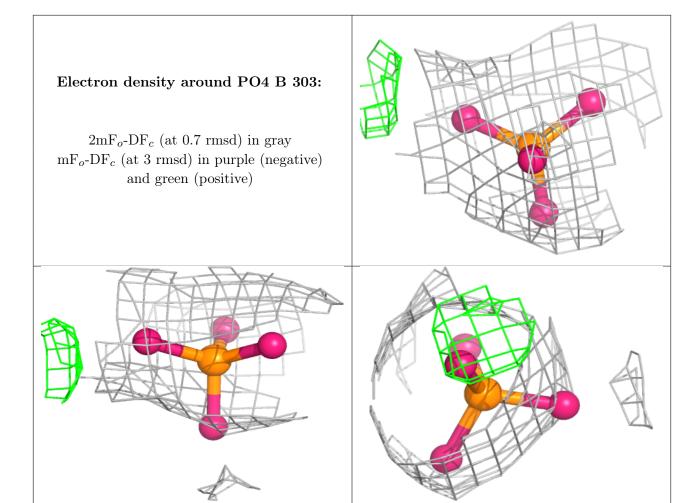
In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum,

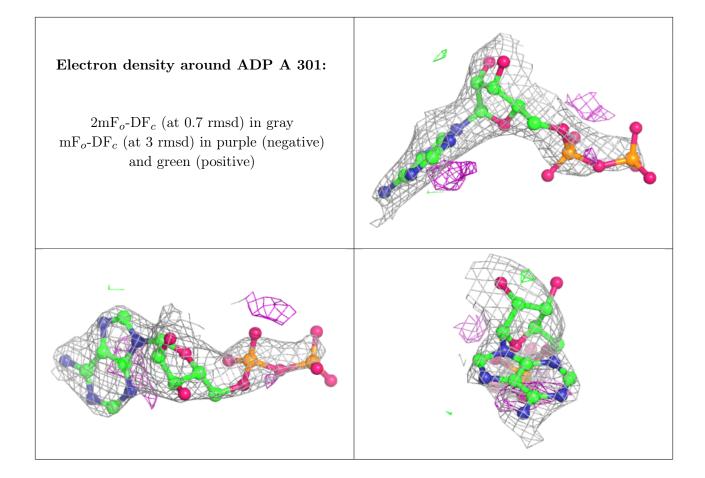


median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

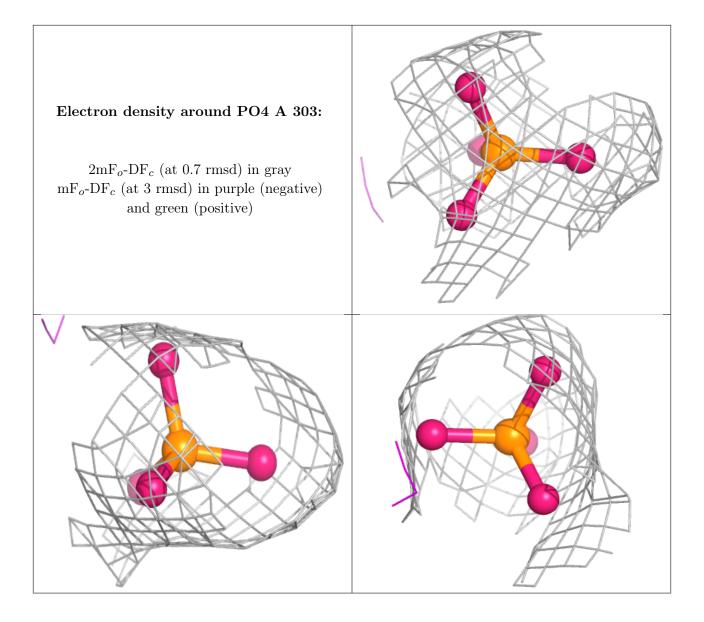
Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\operatorname{B-factors}({ m \AA}^2)$	Q<0.9
3	PO4	A	305	5/5	0.69	0.10	127,134,174,180	0
2	ADP	В	301	27/27	0.73	0.14	83,127,181,197	27
3	PO4	В	303	5/5	0.77	0.09	122,135,181,190	0
2	ADP	A	301	27/27	0.78	0.17	78,124,180,195	27
3	PO4	A	304	5/5	0.82	0.09	110,112,157,171	0
3	PO4	A	303	5/5	0.90	0.07	93,126,138,140	0
3	PO4	В	302	5/5	0.92	0.08	94,109,113,131	0
3	PO4	A	302	5/5	0.97	0.07	80,90,107,109	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

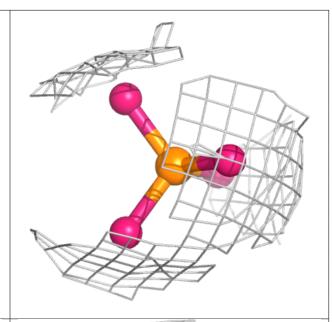


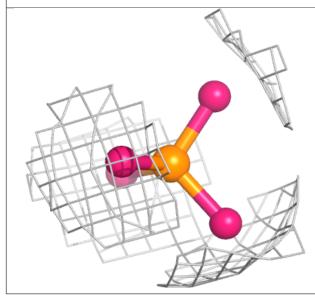


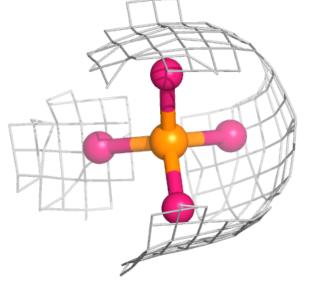
Electron density around ADP B 301: 2mF_o-DF_c (at 0.7 rmsd) in gray mF_o-DF_c (at 3 rmsd) in purple (negative) and green (positive)



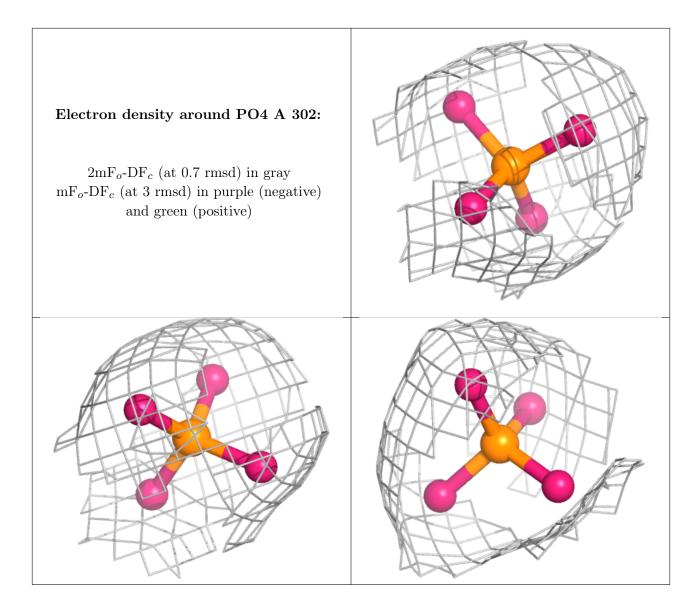
Electron density around PO4 A 304: 2mF_o-DF_c (at 0.7 rmsd) in gray mF_o-DF_c (at 3 rmsd) in purple (negative) and green (positive)







Electron density around PO4 B 302:


 $2 {
m mF}_o {
m -DF}_c$ (at 0.7 rmsd) in gray ${
m mF}_o {
m -DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)

6.5 Other polymers (i)

There are no such residues in this entry.

