

wwPDB EM Validation Summary Report (i)

Jul 14, 2025 – 05:28 pm BST

PDB ID	:	$9 \mathrm{FZL} \ / \ \mathrm{pdb} \ 00009 \mathrm{fzl}$
EMDB ID	:	EMD-50491
Title	:	Perkinsus marinus respiratory supercomplex CII2CIII2CIV2 in an intermedi-
		ate state
Authors	:	Wu, F.; Amunts, A.
Deposited on	:	2024-07-05
Resolution	:	2.20 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev118
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4-5-2 with Phenix2.0rc1
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.44

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	2M	604	77%	69/
1	2111	004	77%	0 76
1	2m	604	94%	6%
			24%	
2	2N	259	95%	5%
0	212	250	23%	50/
	211	239	95%	5%
3	20	160	94%	6%
3	20	160	95%	5%
			<u>.</u>	
4	2P	158	93%	7%
4	2p	158	94%	6%

Conti	nued from	n previous	page	
Mol	Chain	Length	Quality of chain	
5	2Q	69	91%	9%
5	2q	69	91%	9%
6	2R	117	88%	12%
6	2r	117	91%	9%
7	2S	165	93%	7%
7	2s	165	93%	7%
8	2T	82	89%	11%
8	2t	82	89%	11%
9	2U	48	88%	12%
9	2u	48	88%	12%
10	2V	87	97%	•
10	2v	87	95%	5%
11	3A	454	97%	•
11	3a	454	97%	•
12	3B	496	97%	•
12	3b	496	98%	·
13	3C	241	97%	•
13	3c	241	98%	•
14	3D	95	95%	5%
14	3d	95	95%	5%
15	3E	92	95%	5%
15	3e	92	96%	•
16	3F	84	96%	·
16	3f	84	96%	·
17	3G	354	90%	10%

Conti	nued fron	n previous j	page	
Mol	Chain	Length	Quality of chain	
17	3g	354	90%	10%
18	3H	326	87%	13%
18	3h	326	87%	13%
19	3I	176	95%	5%
19	3i	176	95%	5%
20	3J	92	99%	·
20	3j	92	99%	•
21	3K	79	97%	•
21	3k	79	95%	5%
22	3L	69	87%	13%
22	31	69	87%	13%
23	40	230	90%	10%
23	41	230	90%	10%
24	4A	100	91%	9%
24	4a	100	91%	9%
25	4B	93	98%	8% •
25	4b	93	98% 91%	8% •
26	4C	75	96% 	11% •
26	4c	75	96% 	11% •
27	4D	90	99% 92%	8%
27	4d	90	93%	7%
28	4E	152	95%	5%
28	4e	152	95%	5%
29	$4\mathrm{F}$	73	99%	•
29	4f	73	99% 	

Mol	Chain	Length	Quality of chain	
20	10	100	99%	
30	4G	100	98%	•
30	4o	100	08%	
	-8	100	100%	
31	$4\mathrm{H}$	141	96%	•
			100%	
31	4h	141	95%	5%
30	41	106	100%	F.0/
- 52	41	130	100%	5%
32	4i	196	94%	6%
			100%	
33	4J	186	92%	8%
22	4;	196	100%	
- 33	4J	100	91%	9%
34	4K	93	95%	5%
_			100%	
34	4k	93	95%	5%
	4.1	100	100%	
35	4L	122	96%	•
35	4]	122	Q6%	
		122	100%	
36	4M	98	93%	7%
20		0.0	100%	
36	4m	98	93%	7%
37	4N	131	Q5%	5%
	111	101	100%	
37	4n	131	95%	5%
	10		100%	
38	40	47	91%	9%
38	40	17	010/	0%
- 30	40	-11	100%	9%
39	4P	180	96%	•
			100%	
39	4p	180	96%	•
40	40	450	100%	120/
40	4Q	409	88%	12%
40	4q	459	88%	12%
	1		100%	
41	4R	103	97%	•
41	4	109	100%	
41	4r	103	96%	•
42	4S	65	97%	•
	-~			

Continued from previous page...

Mol	Chain	Length	Quality of chain	
			100%	
42	4s	65	100%	
			100%	
43	$4\mathrm{T}$	121	93%	7%
			100%	
43	4t	121	93%	7%
			100%	
44	$4\mathrm{U}$	91	88%	12%
			100%	
44	4u	91	89%	11%
			100%	
45	4V	185	93%	7%
			100%	
45	4v	185	93%	7%
			100%	
46	4W	141	96%	•
			100%	
46	4w	141	96%	•
			100%	
47	4X	226	91%	9%
			100%	
47	4x	226	90%	10%
			100%	
48	4Y	107	95%	5%
			100%	
48	4y	107	95%	5%
			100%	
49	4Z	186	98%	•
			100%	
49	4z	186	98%	•

Continued from previous page...

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
61	AJP	40	304	Х	-	-	-
61	AJP	41	304	Х	-	-	-

2 Entry composition (i)

There are 68 unique types of molecules in this entry. The entry contains 142424 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
1 2M	<u>э</u> М	604	Total	С	Ν	0	S	0	0
	004	4610	2880	831	873	26	0	0	
1 2m		604	Total	С	Ν	0	S	0	0
	Zm	004	4610	2880	831	873	26	0	0

• Molecule 2 is a protein called Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
2 2N	2N	250	Total	С	Ν	0	\mathbf{S}	0	0
	211	209	2068	1309	355	378	26	0	0
2	9n	250	Total	С	Ν	0	\mathbf{S}	0	0
	211	211 239	2068	1309	355	378	26	U	0

• Molecule 3 is a protein called SDHG.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	20	160	Total	С	Ν	0	S	0	0
	20	100	1254	806	229	213	6	0	
3	20	160	Total	С	Ν	0	S	0	0
			1254	806	229	213	6		

• Molecule 4 is a protein called Transmembrane protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
4	2P	158	Total	С	Ν	0	S	0	0
-1	21	100	1309	846	246	211	6	0	0
4	- On	159	Total	С	Ν	0	S	0	0
4	2p	156	1309	846	246	211	6	0	0

• Molecule 5 is a protein called Kinesin-like protein.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
5	20	60	Total	С	Ν	0	\mathbf{S}	0	0
5	2Q	09	564	367	100	94	3	0	0
5	റപ	60	Total	С	Ν	0	S	0	0
5	∠q	09	564	367	100	94	3	0	

• Molecule 6 is a protein called SDHH.

Mol	Chain	Residues		At	oms		AltConf	Trace	
6	эр	117	Total	С	Ν	0	S	0	0
0	210	117	950	621	166	157	6	0	0
6)r	117	Total	С	Ν	0	\mathbf{S}	0	0
0	21	117	950	621	166	157	6	0	0

• Molecule 7 is a protein called DUF6827 domain-containing protein.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
7	2S	165	Total 1323	C 832	N 223	O 257	S 11	0	0
7	2s	165	Total 1323	C 832	N 223	O 257	S 11	0	0

• Molecule 8 is a protein called Rab-GAP TBC domain-containing protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
8	эт	89	Total	С	Ν	Ο	\mathbf{S}	0	0
0	21	02	695	446	117	128	4	0	0
8	2+	89	Total	С	Ν	0	S	0	0
0	20	02	695	446	117	128	4		

• Molecule 9 is a protein called Syntaxin-1A.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
0	211	18	Total	С	Ν	Ο	S	0	0
9	20	40	390	246	68	75	1	0	0
0	911	18	Total	С	Ν	Ο	S	0	0
9	Zu	40	390	246	68	75	1	0	0

• Molecule 10 is a protein called SDHI.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	2V	87	Total 709	C 457	N 119	0 126	S 7	0	0

Continued from previous page...

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
10	2v	87	Total 709	C 457	N 119	O 126	${ m S} 7$	0	0

• Molecule 11 is a protein called Mitochondrial processing peptidase beta subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
11	3A	454	Total 3622	C 2285	N 621	O 698	S 18	0	0
11	3a	454	Total 3622	C 2285	N 621	O 698	S 18	0	0

• Molecule 12 is a protein called Alpha-MPP.

Mol	Chain	Residues		At	oms		AltConf	Trace	
19	зВ	406	Total	С	Ν	Ο	\mathbf{S}	0	0
12	50	490	3884	2459	669	734	22	0	0
19	2h	406	Total	С	Ν	Ο	\mathbf{S}	0	0
	30	490	3884	2459	669	734	22	0	0

• Molecule 13 is a protein called Iso-1-cytochrome c.

Mol	Chain	Residues		At	oms		AltConf	Trace	
13	30	941	Total	С	Ν	0	\mathbf{S}	0	Ο
10	50	241	1921	1225	334	349	13	0	0
12	30	941	Total	С	Ν	0	\mathbf{S}	0	0
10	30	241	1921	1225	334	349	13	0	0

• Molecule 14 is a protein called QCR8.

Mol	Chain	Residues		At	oms		AltConf	Trace	
14	3D	95	Total	С	Ν	0	S	0	0
	012	50	836	551	146	135	4	Ŭ	
14	24	05	Total	С	Ν	0	\mathbf{S}	0	0
14	Ju	90	836	551	146	135	4	0	0

• Molecule 15 is a protein called QCR9.

Mol	Chain	Residues		At	oms		AltConf	Trace	
15	25	02	Total	С	Ν	0	S	0	0
10	515	92	813	545	138	127	3	0	0
15	20	02	Total	С	Ν	0	S	0	0
10	Je	92	813	545	138	127	3	0	

• Molecule 16 is a protein called QCR10.

Mol	Chain	Residues		At	oms		AltConf	Trace	
16	3F	84	Total 734	C 493	N 123	0 114	S 4	0	0
16	3f	84	Total 734	C 493	N 123	0 114	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 17 is a protein called Cytochrome b.

Mol	Chain	Residues		At		AltConf	Trace		
17	3G	354	Total 3016	C 2063	N 448	0 498	${f S}{7}$	0	0
17	$3\mathrm{g}$	354	Total 3016	C 2063	N 448	O 498	${ m S} 7$	0	0

• Molecule 18 is a protein called Ubiquinol-cytochrome c reductase, iron-sulfur subunit, putative.

Mol	Chain	Residues		At	oms		AltConf	Trace	
18	3H	326	Total 2628	C 1669	N 478	0 466	S 15	0	0
10	01	220	Total	C	-470 N	0	$\frac{10}{\mathrm{S}}$	0	0
18	3h	326	2628	1669	478	466	15	0	0

• Molecule 19 is a protein called Ubiquinol-cytochrome C reductase complex 14kD subunit, putative.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
10	51	176	Total	С	Ν	0	S	0	0
19	51	170	1472	946	255	259	12	0	0
10	2;	176	Total	С	Ν	0	S	0	0
19	51	170	1472	946	255	259	12		U

• Molecule 20 is a protein called Ubiquinol-cytochrome c reductase complex 7.8 kDa protein, putative.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
20	3 I	02	Total	С	Ν	0	\mathbf{S}	0	0
20	-00	92	755	471	134	139	11	0	0
20	2;	02	Total	С	Ν	0	S	0	0
20	J	92	755	471	134	139	11	0	0

• Molecule 21 is a protein called Cu-binding protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
91	3K	70	Total	С	Ν	0	S	0	0
21	31	19	608	391	110	103	4	0	0
91	3],	70	Total	С	Ν	0	S	0	0
21	AC	19	608	391	110	103	4	0	0

• Molecule 22 is a protein called Aurora kinase.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
	51	60	Total	С	Ν	0	S	0	0
	Ъ	09	509	327	91	89	2	0	0
	2]	60	Total	С	Ν	0	S	0	0
	01	09	509	327	91	89	2	0	0

• Molecule 23 is a protein called Cytochrome c oxidase subunit 3.

Mol	Chain	Residues		At		AltConf	Trace		
23	40	230	Total 2004	C 1365	N 289	O 346	${S \atop 4}$	0	0
23	41	230	Total 2004	C 1365	N 289	0 346	$\frac{S}{4}$	0	0

• Molecule 24 is a protein called Cytochrome c oxidase subunit 6B.

Mol	Chain	Residues		At	oms		AltConf	Trace	
24	4.4	100	Total	С	Ν	Ο	\mathbf{S}	0	0
24	47	100	841	518	157	157	9	0	0
24	4.0	100	Total	С	Ν	0	S	0	0
24	44	100	841	518	157	157	9	0	0

• Molecule 25 is a protein called Peptidase M14 carboxypeptidase A domain-containing protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
25	4P	03	Total	С	Ν	Ο	S	0	0
2.0	4D	90	732	479	116	129	8	0	0
25	4b	03	Total	С	Ν	0	S	0	0
2.0	40	90	732	479	116	129	8	0	0

• Molecule 26 is a protein called Cytochrome c oxidase subunit 40.

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
26	4C	75	Total 626	C 414	N 95	0 113	${S \atop 4}$	0	0

Continued from previous page...

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
26	4c	75	Total 626	C 414	N 95	0 113	${f S}$ 4	0	0

• Molecule 27 is a protein called Cytochrome c oxidase subunit 34.

Mol	Chain	Residues		At	oms		AltConf	Trace	
97	4D	00	Total	С	Ν	0	S	0	0
21	4D	90	787	525	128	131	3	0	0
97	4.4	00	Total	С	Ν	0	S	0	0
21	40	90	787	525	128	131	3	0	0

• Molecule 28 is a protein called Merozoite surface protein, putative.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
28	4F	159	Total	С	Ν	0	\mathbf{S}	0	Ο
20	415	152	1313	840	229	229	15	0	0
20	40	159	Total	С	Ν	0	S	0	0
20	40	152	1313	840	229	229	15	0	0

• Molecule 29 is a protein called Ubiquitin, putative.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
20	4F	73	Total	С	Ν	Ο	S	0	0
29	41	15	613	406	108	97	2	0	0
20	٨f	72	Total	С	Ν	Ο	S	0	0
29	41	10	613	406	108	97	2	0	U

• Molecule 30 is a protein called Cytochrome c oxidase subunit 33.

Mol	Chain	Residues		At	oms		AltConf	Trace	
30	4G	100	Total 854	C 550	N 156	0 144	${S \atop 4}$	0	0
30	4g	100	Total 854	C 550	N 156	0 144	$\frac{S}{4}$	0	0

• Molecule 31 is a protein called Cytochrome c oxidase subunit 30.

Mol	Chain	Residues		At	oms		AltConf	Trace	
21	411	1.41	Total	С	Ν	0	S	0	0
51	411	141	1125	711	195	217	2	0	0
21	4h	1.4.1	Total	С	Ν	0	S	0	0
51	411	141	1125	711	195	217	2	0	0

• Molecule 32 is a protein called Cytochrome c oxidase subunit 6C.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
32	4I	196	Total	С	Ν	0	S	0	0
		100	1695	1105	276	305	9	Ŭ	Ŭ
20	4;	106	Total	С	Ν	0	\mathbf{S}	0	0
52	41	190	1695	1105	276	305	9		U

• Molecule 33 is a protein called Cytochrome c oxidase subunit 24.

Mol	Chain	Residues		At	oms		AltConf	Trace	
22	41	186	Total	С	Ν	Ο	S	0	0
- 55	40	100	1517	990	268	253	6	0	0
22	4;	186	Total	С	Ν	0	\mathbf{S}	0	0
- 55	ΞJ	100	1517	990	268	253	6	0	0

• Molecule 34 is a protein called Cytochrome c oxidase subunit 37.

Mol	Chain	Residues		At	oms		AltConf	Trace	
34	4K	93	Total 722	C 473	N 129	0 118	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0
34	4k	93	Total 722	C 473	N 129	0 118	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 35 is a protein called Cytochrome c oxidase subunit 7A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
35	41	199	Total	С	Ν	Ο	\mathbf{S}	0	0
- 55	4L	122	1083	715	192	168	8	0	0
35	41	199	Total	С	Ν	0	S	0	0
00	-41	122	1083	715	192	168	8		

• Molecule 36 is a protein called Cytochrome c oxidase subunit 35.

Mol	Chain	Residues		At	oms		AltConf	Trace	
36	4M	08	Total	С	Ν	Ο	S	0	0
50	4111	90	773	498	147	127	1	0	0
36	4m	08	Total	С	Ν	Ο	\mathbf{S}	0	0
- 50	4111	90	773	498	147	127	1	0	0

• Molecule 37 is a protein called Cytochrome c oxidase polypeptide II.

Mol	Chain	Residues		At	oms		AltConf	Trace	
37	4N	131	Total	С	Ν	0	\mathbf{S}	0	0
51	411	131	1025	661	173	184	7	0	0
37	An	121	Total	С	Ν	0	S	0	0
51	411	131	1025	661	173	184	7	0	0

• Molecule 38 is a protein called GINS subunit domain-containing protein.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
20	40	47	Total	С	Ν	Ο	S	0	0
30	40	41	383	257	60	63	3	0	0
20	10	47	Total	С	Ν	Ο	S	0	0
30	40	41	383	257	60	63	3	0	0

• Molecule 39 is a protein called Cytochrome c oxidase subunit 2A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
30	4P	180	Total	С	Ν	Ο	\mathbf{S}	0	0
0.5	41	100	1504	977	246	276	5	0	0
30	4n	180	Total	С	Ν	0	\mathbf{S}	0	0
- 59	чþ	160	1504	977	246	276	5	0	0

• Molecule 40 is a protein called Cytochrome c oxidase subunit 1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
40	40	459	Total	С	Ν	Ο	\mathbf{S}	0	0
40	40	409	3687	2519	545	612	11	0	0
40	40	450	Total	С	Ν	0	\mathbf{S}	0	0
40	49	409	3687	2519	545	612	11	0	0

• Molecule 41 is a protein called Cytochrome c oxidase subunit 32.

Mol	Chain	Residues		At	oms		AltConf	Trace	
41	4P	103	Total	С	Ν	Ο	S	0	0
41	410	105	916	609	156	145	6	0	0
41	Ar	103	Total	С	Ν	Ο	\mathbf{S}	0	0
41	41	103	916	609	156	145	6		

• Molecule 42 is a protein called Cytochrome c oxidase subunit 7C.

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
42	4S	65	Total 541	C 350	N 85	0 100	S 6	0	0

Continued from previous page...

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
42	4s	65	Total 541	$\begin{array}{c} \mathrm{C} \\ 350 \end{array}$	N 85	O 100	S 6	0	0

• Molecule 43 is a protein called Cytochrome c oxidase subunit 13.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms		AltConf	Trace	
43	4T	121	Total 983	C 634	N 170	0 167	S 12	0	0
			Total	054 C	N	0	<u>S</u>		
43	4t	121	983	634	170	167	12	0	0

• Molecule 44 is a protein called Amino acid transporter transmembrane domain-containing protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
44	$4\mathrm{U}$	91	Total 758	C 503	N 125	0 127	${ m S} { m 3}$	0	0
44	4u	91	Total 758	C 503	N 125	0 127	${ m S} { m 3}$	0	0

• Molecule 45 is a protein called Cytochrome c oxidase subunit 4.

Mol	Chain	Residues		At	oms		AltConf	Trace	
45	417	185	Total	С	Ν	0	\mathbf{S}	0	0
40	4 V	165	1539	1003	270	260	6	0	0
45	437	185	Total	С	Ν	0	S	0	0
40	4V	100	1539	1003	270	260	6		U

• Molecule 46 is a protein called Cytochrome c oxidase subunit 19.

Mol	Chain	Residues		At	oms		AltConf	Trace	
46	4337	1.41	Total	С	Ν	Ο	S	0	0
40	4 11	141	1193	782	206	198	$\overline{7}$	0	0
46	4	1.4.1	Total	С	Ν	0	S	0	0
40	4 W	141	1193	782	206	198	$\overline{7}$	0	0

• Molecule 47 is a protein called Cytochrome Coxidase subunit, putative.

Mol	Chain	Residues		At	AltConf	Trace			
47	4X	226	Total 1860	C 1186	N 313	0 344	S 17	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf	Trace
47	4x	226	Total 1860	C 1186	N 313	0 344	${ m S}$ 17	0	0

• Molecule 48 is a protein called Cytochrome c oxidase subunit 18.

Mol	Chain	Residues		At	oms			AltConf	Trace
48	4Y	107	Total	С	N	0	S	0	0
10 11			905	567	153	179	6	_	Ŭ
18	4.57	107	Total	С	Ν	Ο	\mathbf{S}	0	0
40	4y	107 9	905	567	153	179	6	0	0

• Molecule 49 is a protein called Cytochrome c oxidase subunit 31.

Mol	Chain	Residues	Atoms					AltConf	Trace
40	47	186	Total	С	Ν	0	\mathbf{S}	0	0
	42	100	1582	1041	270	266	5	0	0
40	47	186	Total	С	Ν	0	\mathbf{S}	0	0
49	4Z	100	1582	1041	270	266	5	0	U

• Molecule 50 is FLAVIN-ADENINE DINUCLEOTIDE (CCD ID: FAD) (formula: $C_{27}H_{33}N_9O_{15}P_2$).

Mol	Chain	Residues	Atoms				AltConf			
50	214	1	Total	С	Ν	0	Р	0		
50 ZM	2111	1	53	27	9	15	2	0		
50	0.00	0.00	0.000	1	Total	С	Ν	0	Р	0
50	2111	1	53	27	9	15	2	0		

• Molecule 51 is FE2/S2 (INORGANIC) CLUSTER (CCD ID: FES) (formula: Fe₂S₂).

Mol	Chain	Residues	Atoms	AltConf
51	2N	1	Total Fe S 4 2 2	0
51	3H	1	TotalFeS422	0
51	2n	1	TotalFeS422	0
51	3h	1	Total Fe S 4 2 2	0

• Molecule 52 is IRON/SULFUR CLUSTER (CCD ID: SF4) (formula: Fe $_4S_4).$

Chain	Residues	Atoms	AltConf
2N	1	Total Fe S	0
		8 4 4	
2n	1	Total Fe S 8 4 4	0
	2N 2n	2N12n1	$\frac{2N}{2n} \frac{1}{1} \frac{\text{Total}}{8} \frac{\text{Fe}}{4} \frac{\text{S}}{4}$ $\frac{2n}{1} \frac{1}{8} \frac{1}{8} \frac{1}{4} \frac{1}{4}$

• Molecule 53 is FE3-S4 CLUSTER (CCD ID: F3S) (formula: Fe_3S_4).

Mol	Chain	Residues	Atoms	AltConf
53	$2\mathrm{N}$	1	Total Fe S	0
00	21 N	T	7 3 4	0
53	n	1	Total Fe S	0
53	211	L	7 3 4	U

• Molecule 54 is POTASSIUM ION (CCD ID: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
54	2N	1	Total K 1 1	0
54	4Q	1	Total K 1 1	0
54	2n	1	Total K 1 1	0
54	4q	1	Total K 1 1	0

• Molecule 55 is 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (CCD ID: PEE) (formula: $C_{41}H_{78}NO_8P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ato	oms			AltConf
FF	20	1	Total	С	Ν	Ο	Р	0
55	20	1	51	41	1	8	1	0
55	٩D	1	Total	С	Ν	Ο	Р	0
- 55	ΔΓ	1	51	41	1	8	1	0
55	эD	1	Total	С	Ν	Ο	Р	0
55	21	1	51	41	1	8	1	0
55	nD	1	Total	С	Ν	0	Р	0
55	210	1	51	41	1	8	1	0
55	30	1	Total	С	Ν	0	Р	0
55	30	1	51	41	1	8	1	0
55	3E	1	Total	С	Ν	0	Р	0
55	51	1	51	41	1	8	1	0
55	40	1	Total	С	Ν	0	Р	0
00	40	1	51	41	1	8	1	U
55	40	1	Total	С	Ν	0	Р	0
- 55	40	I	51	41	1	8	1	0
55	40	1	Total	С	Ν	Ο	Р	0
00	40	1	51	41	1	8	1	0
55	4D	1	Total	С	Ν	0	Р	0
- 55	4D	1	51	41	1	8	1	0
55	40	1	Total	С	Ν	Ο	Р	0
- 55	402	T	51	41	1	8	1	0
55	40	1	Total	С	Ν	Ο	Р	0
- 55	402	T	51	41	1	8	1	0
55	4B	1	Total	С	Ν	Ο	Р	0
	711	L	51	41	1	8	1	0
55	48	1	Total	C	N	0	Р	0
00	CF.		51	41	1	8	1	U

Continued from previous page...

Mol	Chain	Residues	_	Ato	oms			AltConf
FF	4337	1	Total	С	Ν	0	Р	0
55	4 VV	1	51	41	1	8	1	0
	47	1	Total	С	Ν	0	Р	0
55	4L	1	51	41	1	8	1	0
	FF 0	1	Total	С	Ν	0	Р	0
55	20	1	51	41	1	8	1	0
	0	1	Total	С	Ν	0	Р	0
55	2p	1	51	41	1	8	1	0
	0	1	Total	С	Ν	0	Р	0
55	2p	1	51	41	1	8	1	0
	0	1	Total	С	Ν	0	Р	0
55	2r	1	51	41	1	8	1	0
	9.	1	Total	С	Ν	0	Р	0
55	3C	1	51	41	1	8	1	0
	10	1	Total	С	Ν	0	Р	0
55	31	1	51	41	1	8	1	0
	41	1	Total	С	Ν	0	Р	0
55	41	T	51	41	1	8	1	0
	41	1	Total	С	Ν	Ο	Р	0
55	41	1	51	41	1	8	1	0
	41	1	Total	С	Ν	0	Р	0
55	41	1	51	41	1	8	1	0
	4.1	1	Total	С	Ν	0	Р	0
55	40	1	51	41	1	8	1	0
	4	1	Total	С	Ν	0	Р	0
55	4q	1	51	41	1	8	1	0
	4	1	Total	С	Ν	0	Р	0
55	4q	1	51	41	1	8	1	0
	4	1	Total	С	Ν	0	Р	0
55	4r	1	51	41	1	8	1	0
FF	4 ~	1	Total	С	Ν	0	Р	0
55	48		51	41	1	8	1	U
EF	1	1	Total	С	Ν	0	Р	0
55	4W		51	41	1	8	1	0
EF	4-	1	Total	С	Ν	0	Р	0
55	4Z		51	41	1	8	1	U

• Molecule 56 is 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOCHOLINE (CCD ID: PC1) (formula: C₄₄H₈₈NO₈P) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		Ato	oms			AltConf	
EC	20	1	Total	С	Ν	0	Р	0	
90	20	1	54	44	1	8	1	0	
56	20	1	Total	С	Ν	Ο	Р	0	
- 50	20	1	54	44	1	8	1	0	
56	эD	1	Total	С	Ν	0	Р	0	
- 50	21	1	54	44	1	8	1	0	
56	эВ	1	Total	С	Ν	Ο	Р	0	
- 50	210	1	54	44	1	8	1	0	
56	эт	1	Total	С	Ν	0	Р	0	
- 50	21	I	54	44	1	8	1	0	
56	34	1	Total	С	Ν	Ο	Р	0	
50	54	T	54	44	1	8	1	0	
56	34	1	Total	С	Ν	Ο	Р	0	
- 50	0/1	1	54	44	1	8	1		
56	3H	1	Total	\mathbf{C}	Ν	Ο	Р	0	
	011	I	54	44	1	8	1	0	
56	$4\mathrm{E}$	1	Total	С	Ν	Ο	Р	0	
		1	54	44	1	8	1	0	
56	20	1	Total	С	Ν	Ο	Р	0	
00	20	1	54	44	1	8	1	0	
56	20	1	Total	С	Ν	Ο	Р	0	
	20	1	54	44	1	8	1	0	
56	2n	1	Total	С	Ν	Ο	Р	0	
	2p	1	54	44	1	8	1	0	
56	2r	1	Total	\mathbf{C}	Ν	0	Р	0	
		*	54	44	1	8	1		
56	2t	1	Total	С	Ν	Ο	Р	0	
00	2t	56 2t		54	44	1	8	1	Ŭ

Continued from previous page	page	
------------------------------	------	--

Mol	Chain	Residues	Atoms	AltConf
56	20	1	Total C N O P	0
50 Ja	T	54 44 1 8 1	0	
56	56 30	1	Total C N O P	0
- 00 - 0	Ja	L	54 44 1 8 1	0
F6 2h	2h	1	Total C N O P	0
- 50	311	L	54 44 1 8 1	0
56	4e	4e 1	Total C N O P	0
			54 44 1 8 1	0

• Molecule 57 is CARDIOLIPIN (CCD ID: CDL) (formula: $C_{81}H_{156}O_{17}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	Aton	ns		AltConf
57	20	1	Total	С	0	Р	0
57	20	1	100	81	17	2	0
57	эD	1	Total	С	0	Р	0
57	21	1	100	81	17	2	0
57	20	1	Total	С	0	Р	0
57	ZQ	1	100	81	17	2	0
57	211	1	Total	С	0	Р	0
57	20	1	100	81	17	2	0
57	2D	1	Total	С	0	Р	0
57	3D	1	100	81	17	2	0
57	лD	1	Total	С	Ο	Р	0
51	50		100	81	17	2	
57	<u>२</u> म	1	Total	С	0	Р	0
51	- JE	1	100	81	17	2	0

Continued from previous page...

Mol	Chain	Residues		Aton	ns		AltConf
F 7	эĿ	1	Total	С	Ο	Р	0
57	3E	1	100	81	17	2	0
E 7	217	1	Total	С	Ο	Р	0
57	3E	1	100	81	17	2	0
57	20	1	Total	С	Ο	Р	0
57	9G	L	100	81	17	2	0
57	<u>а</u> П	1	Total	С	Ο	Р	0
- 57	511	I	100	81	17	2	0
57	श	1	Total	С	Ο	Р	0
- 51	51	T	100	81	17	2	0
57	31	1	Total	С	Ο	Р	0
01	01	1	100	81	17	2	0
57	31	1	Total	С	Ο	Р	0
	01	1	100	81	17	2	0
57	31	1	Total	С	Ο	Р	0
	01	1	100	81	17	2	
57	3L	1	Total	С	Ο	Р	0
	01	-	100	81	17	2	
57	$4\mathrm{E}$	1	Total	С	Ο	Р	0
	112		100	81	17	2	0
57	4.I	1	Total	С	Ο	Р	0
		-	100	81	17	2	
57	4K	1	Total	С	0	Р	0
		_	100	81	17	2	
57	4K	1	Total	C	0	Р	0
			100	81	17	2	
57	4L	1	Total	C	0	Р	0
			100	81	<u> </u>	2	
57	$4\mathrm{M}$	1	Total	C	0	Р	0
			100	81	<u> </u>	2	
57	4Q	1	Total	C	0	P	0
	-			81	11	2	
57	4Q	1	10tal	C	17	P	0
	-			81	11	2	
57	4S	1	10tal	U 01	U 17	۲ ٥	0
				<u>81</u>	$\frac{1}{0}$	$\frac{2}{\mathbf{D}}$	
57	4T	1	10tal	01	U 17	r ภ	0
			100	<u>81</u>	11	2 D	
57	4U	1	10tal	U 01	17	۲ ٥	0
				81	17	2	
57	4W	1	10tal	U 01	17	Р о	0
			100	81	17	2	

Continued from previous page...

Mol	Chain	Residues	I	Aton	ns		AltConf
57	4117	1	Total	С	Ο	Р	0
57	4 VV	1	100	81	17	2	0
F7	47	1	Total	С	Ο	Р	0
57	4L	1	100	81	17	2	0
F7	9	1	Total	С	Ο	Р	0
57	20	1	100	81	17	2	0
F7	D	1	Total	С	Ο	Р	0
57	2p	L	100	81	17	2	0
57	ົງຕ	1	Total	С	0	Р	0
57	2q	L	100	81	17	2	0
57	0.,	1	Total	С	0	Р	0
57	2u	L	100	81	17	2	0
57	24	1	Total	С	0	Р	0
57	ЪС	L	100	81	17	2	0
57	24	1	Total	С	0	Р	0
57	ЪС	L	100	81	17	2	0
57	30	1	Total	С	Ο	Р	0
57	Je	L	100	81	17	2	0
57	20	1	Total	С	Ο	Р	0
57	ъe	L	100	81	17	2	0
57	30	1	Total	С	Ο	Р	0
57	Je	L	100	81	17	2	0
57	3 a	1	Total	С	Ο	Р	0
57	Jg	L	100	81	17	2	0
57	3h	1	Total	С	Ο	Р	0
51	511	T	100	81	17	2	0
57	2;	1	Total	С	Ο	Р	0
- 51	51	T	100	81	17	2	0
57	2;	1	Total	С	Ο	Р	0
- 51	51	I	100	81	17	2	0
57	2;	1	Total	С	Ο	Р	0
01	01	T	100	81	17	2	0
57	3]	1	Total	С	Ο	Р	0
	01	1	100	81	17	2	0
57	3]	1	Total	С	Ο	Р	0
		*	100	81	17	2	
57	4e	1	Total	С	Ο	Р	0
		*	100	81	17	2	
57	4i	1	Total	С	Ο	Р	0
	-1J	*	100	81	17	2	
57	4k	1	Total	С	Ο	Р	0
			100	81	17	2	

Mol	Chain	Residues	A	Aton	ns		AltConf
57	4k	1	Total	С	0	Р	0
		*	100	81	17	2	0
57	41	1	Total	С	Ο	Р	0
01		T	100	81	17	2	0
57	$4\mathrm{m}$	1	Total	С	Ο	Р	0
01	7111	I	100	81	17	2	0
57	40	1	Total	С	Ο	Р	0
- 57	ΞŶ	I	100	81	17	2	0
57	40	1	Total	С	Ο	Р	0
01	ΞŶ	I	100	81	17	2	0
57	19	1	Total	С	Ο	Р	0
01	-15	1	100	81	17	2	0
57	<i>1</i> +	1	Total	С	Ο	Р	0
01	-10	T	100	81	17	2	0
57	411	1	Total	С	Ο	Р	0
01	чu	T	100	81	17	2	0
57	4w	1	Total	С	Ο	Р	0
01	-111	T	100	81	17	2	0
57	111	1	Total	С	Ο	Р	0
- 01	4 W	I	100	81	17	2	0
57	47	1	Total	\mathbf{C}	Ο	Р	0
01	42	L	100	81	17	2	

Continued from previous page...

• Molecule 58 is Ubiquinone-8 (CCD ID: UQ8) (formula: $C_{49}H_{74}O_4$).

Mol	Chain	Residues	Atoms	AltConf
58	2S	1	Total C O 53 49 4	0
58	3D	1	Total C O 53 49 4	0
58	3G	1	Total C O 53 49 4	0
58	3G	1	Total C O 53 49 4	0
58	2s	1	Total C O 53 49 4	0
58	3d	1	Total C O 53 49 4	0
58	3g	1	Total C O 53 49 4	0
58	$3\mathrm{g}$	1	Total C O 53 49 4	0

• Molecule 59 is HEME C (CCD ID: HEC) (formula: $C_{34}H_{34}FeN_4O_4$).

Mol	Chain	Residues		At	\mathbf{oms}			AltConf				
50	20	1	Total	С	Fe	Ν	0	0				
- 59	<u>99</u> 30	L	43	34	1	4	4	0				
50	59 3c	20	30	30	30	1	Total	С	Fe	Ν	0	0
- 59		L	43	34	1	4	4	0				

• Molecule 60 is PROTOPORPHYRIN IX CONTAINING FE (CCD ID: HEM) (formula: $\rm C_{34}H_{32}FeN_4O_4).$

Mol	Chain	Residues		At	oms			AltConf	
60	30	1	Total	С	Fe	Ν	Ο	0	
00	96	1	43	34	1	4	4	0	
60	20	1	Total	С	Fe	Ν	Ο	0	
00	96	1	43	34	1	4	4	0	
60	3."	1	Total	С	Fe	Ν	Ο	0	
00	Jg	1	43	34	1	4	4	0	
60	2	9- 1	1	Total	С	Fe	Ν	Ο	0
00	Jg	1	43	34	1	4	4	0	

• Molecule 61 is Digitonin (CCD ID: AJP) (formula: $\mathrm{C}_{56}\mathrm{H}_{92}\mathrm{O}_{29}).$

Mol	Chain	Residues	Atoms	AltConf
61	40	1	Total C O 43 33 10	0
61	41	1	Total C O 43 33 10	0

• Molecule 62 is 2-(HEXADECANOYLOXY)-1-[(PHOSPHONOOXY)METHYL]ETH YL HEXADECANOATE (CCD ID: LPP) (formula: C₃₅H₆₉O₈P) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
62	40	1	Total C O P	0
02	40	I	44 35 8 1	0
62	4D	1	Total C O P	0
02	4D	1	44 35 8 1	0
62	40	1	Total C O P	0
02	40	1	44 35 8 1	0
62	69 4d	1	Total C O P	0
02	40	1	44 35 8 1	U

• Molecule 63 is DINUCLEAR COPPER ION (CCD ID: CUA) (formula: Cu_2).

Mol	Chain	Residues	Atoms	AltConf
63	4N	1	Total Cu 2 2	0
63	4n	1	Total Cu 2 2	0

• Molecule 64 is COPPER (II) ION (CCD ID: CU) (formula: Cu).

Mol	Chain	Residues	Atoms	AltConf
64	4Q	1	Total Cu 1 1	0
64	4q	1	Total Cu 1 1	0

• Molecule 65 is MAGNESIUM ION (CCD ID: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
65	4Q	1	Total Mg 1 1	0
65	4q	1	Total Mg 1 1	0

• Molecule 66 is HEME-A (CCD ID: HEA) (formula: $C_{49}H_{56}FeN_4O_6$).

Mol	Chain	Residues		At	oms			AltConf
66	40	1	Total	С	Fe	Ν	0	0
00	4Q	1	60	49	1	4	6	0
66	40	1	Total	С	Fe	Ν	0	0
00	4Q	1	60	49	1	4	6	0
66	4 ~	1	Total	С	Fe	Ν	0	0
00	4q	1	60	49	1	4	6	0
66	4q	1	Total	С	Fe	Ν	0	0
			60	49	1	4	6	0

• Molecule 67 is PEROXIDE ION (CCD ID: PER) (formula: O_2).

Mol	Chain	Residues	Atoms	AltConf
67	4Q	1	Total O 2 2	0
67	4q	1	Total O 2 2	0

• Molecule 68 is ZINC ION (CCD ID: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
68	$4\mathrm{T}$	2	Total Zn 2 2	0
68	4X	1	Total Zn 1 1	0
68	4t	2	Total Zn 2 2	0
68	4x	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial

• Molecule 1: Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial

• Molecule 2: Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial

95%

Chain 2n:

23%

5%

Chain 2U:	15%	88%	12%
S1 Y2 K3 HH6 G7 G7 G7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	L11 A16 Q18 H19 H26 13 <u>1</u>	746 1047 148	
• Molecule 9): Syntaxin-1A	-	
Chain 2u:	17%	88%	12%
S1 Y2 H6 E8	L11 A16 Q18 H19 H26 I31	048 048 048	
• Molecule 1	0: SDHI		
Chain 2V:	25%	97%	•
MO M1 L2 R3 S6 S6 S6 S6 S6 S6 S6 S6 S6 S6 S6 S6 S6	LC LB Q10 C11 D23 D48	N49 I E0 D51 D54 K67 K72 K72 K72 K72 K73 K73 K73 K73 K73 K73 K73 K73 K73 K73	
• Molecule 1	0: SDHI		
Chain 2v:	24%	95%	5%
M M L2 R3 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5	LI L8 C11 T12 D23 D48 D48	I50 D64 D64 K67 K72 K73 K76 K73 K76 B4 I77 B84 M85 Y86	
• Molecule 1	1: Mitochondri	al processing peptidase beta	subunit
Chain 3A:		97%	•
Y23 663 L64 R71 H82	V87 D98 1115 1131 V228 A261	M271 E449 G456 R469 R475 Y476	
• Molecule 1	1: Mitochondri	al processing peptidase beta	subunit
Chain 3a:		97%	
Y23 663 L64 R71 H82	V87 D98 1115 1131 V228 V228	M271 E449 G456 R469 R469 Y475	
• Molecule 1	2: Alpha-MPP		
Chain 3B:		97%	•
G48 V67 V71 T102 E103	M123 1201 1201 7209 7298 7298	P367 7369 1369 1369 1369 1543 1543	
		PROTEIN DATA BANK	
• Molecule 12: Alpha-MPP			
--	-----	--------------	
Chain 3b:	98%	.	
648 V67 V71 T102 E103 A209 F219 F219 F219 F219 F219 F219 F219 F21			
• Molecule 13: Iso-1-cytochrome c			
Chain 3C:	97%		
K38 P41 C76 R180 L183 L183 L183 L183 L183 R275 V278 V278			
• Molecule 13: Iso-1-cytochrome c			
Chain 3c:	98%	•	
K38 P41 C76 C76 H183 L183 L183 L183 V277 V277			
• Molecule 14: QCR8			
Chain 3D:	95%	5%	
P17 R72 S87 887 891 N99 D100 V101 V101			
• Molecule 14: QCR8			
Chain 3d:	95%	5%	
P17 R72 S87 887 Y91 N99 D100 V101 Y111			
• Molecule 15: QCR9			
Chain 3E:	95%	5%	
229 E70 P115 P115 P115			
• Molecule 15: QCR9			
Chain 3e:	96%	·	
829 E70 B115 P115 P120			

- Molecule 16: QCR10 Chain 3F: 96% • Molecule 16: QCR10 Chain 3f: 96% P3 P3 • Molecule 17: Cytochrome b Chain 3G: 90% 10% • Molecule 17: Cytochrome b Chain 3g: 90% 10% • Molecule 18: Ubiquinol-cytochrome c reductase, iron-sulfur subunit, putative 30% Chain 3H: 87% 13% 1303 D343 L331 N322 M333 M333 M333 F335 P336 P336 P336 P336 F337 F337 F339 F340 F341
- Molecule 18: Ubiquinol-cytochrome c reductase, iron-sulfur subunit, putative

• Molecule 20: Ubiquinol-cytochrome c reductase complex 7.8 kDa protein, putative

• Molecule 20: Ubiquinol-cytochrome c reductase complex 7.8 kDa protein, putative

• Molecule 21: Cu-bindin	g protein		
Chain 3k:	95%	5%	
P1 820 820 821 122 823 824 833 93 93 93 947 9			
• Molecule 22: Aurora ki	nase		
Chain 3L:	87%	13%	
I546 6547 V568 L569 F596 F596 F596 F596 F596 F596 F596 F	K603 F604 F605 S606 L607 P609 D610 M611 E613 K614		
• Molecule 22: Aurora ki	nase		
29% Chain 31:	87%	13%	
1546 6547 V568 L569 F596 F596 F596 F596 F596 F596 B599 B599 B599 B599 B599 B509 B500 C100 C100 C100 C100 C100 C100 C100 C	K603 F604 P605 S606 L607 P609 P609 D610 B612 E613 K614		
• Molecule 23: Cytochron	ne c oxidase subunit 3		
Chain 40:	100% 90%	10%	
F1 E2 L3 N4 15 15 17 17 18 N6 N16 N11 N11 V10 V110 V111 V112 V112 V113 V113 V113 V114 V114	115 116 117 118 118 118 118 120 120 122 123 123 124 123 125 125 125 125 125 125 125 125 125 125	233 • 133 • 133 • 133 • 133 • 133 • 133 • 133 • 133 • 133 • 133 • 134 • 134 • 144 \bullet	152 L53 D54 M55 L56 L56 L58 N59 N59
••••			•••••
L61 D622 K64 L66 L66 L66 L66 L66 L67 L67 L67 L63 L63 L173 L73 L73 L73 L73 L74 L74 L74 L74 L74 L74 L74 L74 L74 L74	8768 8778 8777 7787 7787 7789 7881 7882 7883 7885 7885 7885 7885 7885 7886 7886 7886	193 795 795 796 197 199 199 1100 1000 1	N112 1113 1114 1114 1114 1114 1114 1115 1115
T121 1122 V123 V123 V128 F127 V128 V128 V128 V128 V130 V130 V130 V133 V134	 Y135 Y137 Y137 Y137 Y136 Y136 S140 S140 S140 Y141 Y144 N145 Y146 N146 Y146 N145 T150 N151 N151 N151 	K153 1154 1155 1155 1155 1155 1156 1156 1150 1163 1163 1163 1163 1165 1165 1165 1165 1166 1166 1166 1166 1166 1166 1166 1166 1166 1175 1155	T172 S173 F175 F175 Y176 1177 L178 L178 L178 L178
	₽ ₽ ► ₽ ₽ 2 1 2 7 7 7 7 8 9 5 8 9 7 7 8		
H H H H H H H H H H H H H H	V13 V15 V15 V15 V15 V15 V15 V25 V25 V25 V25 V25 V25 V25 V25 V25 V2	Y21 Y21 H21 H21 H21 H22 V22 V22 V22 V22 V22 V22 V22 V22 V22	
• Molecule 23: Cytochron	ne c oxidase subunit 3		
Chain 41:	90%	10%	
F1 E2 E2 E2 E2 E2 E2 E2 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	11 11 11 12 12 12 12 12 12 12 12 12 12 1	N 2000 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	I5 D5 N5 N5 N5 N5 V6(

• Molecule 32: Cytochrome c oxidase subunit 6C

E223

P224 E225 H226 K227 I228 N229 W230 V231 V231 K232 P233 R234 R235 G235 G235

• Molecule 32: Cytochrome c oxidase subunit 6C

• Molecule 33: Cytochrome c oxidase subunit 24

• Molecule 33: Cytochrome c oxidase subunit 24

1198 H199 1200 P201 P202 V203

• Molecule 34: Cytochrome c oxidase subunit 37

DB

• Molecule 37: Cytochrome c oxidase polypeptide II

• Molecule 38: GINS subunit domain-containing protein

• Molecule 38: GINS subunit domain-containing protein

• Molecule 39: Cytochrome c oxidase subunit 2A

1825 1825 1825 1827 1827 1830 1833 1834 1834 1835 1834 1835 1834 1835 1834 1835 1834 1835 1841 1841 1841 1841 1841 1841 1841 1841 1841 1841 1842 1843 1844 1845 1845 1845 1853 1853 1855 1855 1855 1855 1855 1855 1855 1855 1855 1855 1855 1855 1855 1855

• Molecule 40: Cytochrome c oxidase subunit 1

• Molecule 41: Cytochrome c oxidase subunit 32

• Molecule 45: Cytochrome c oxidase subunit 4

• Molecule 46: Cytochrome c oxidase subunit 19

• Molecule 46: Cytochrome c oxidase subunit 19

• Molecule 47: Cytochrome Coxidase subunit, putative

• Molecule 49: Cytochrome c oxidase subunit 31

• Molecule 49: Cytochrome c oxidase subunit 31

L195 G196 Y197 S198 E199 L200

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	296890	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	44	Depositor
Minimum defocus (nm)	300	Depositor
Maximum defocus (nm)	1500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 (6k x 4k)	Depositor
Maximum map value	0.214	Depositor
Minimum map value	-0.083	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.0203	Depositor
Map size (Å)	423.2, 423.2, 423.2	wwPDB
Map dimensions	500, 500, 500	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.8464, 0.8464, 0.8464	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FAD, PER, UQ8, HEC, CDL, F3S, FES, SF4, CUA, ACE, PEE, AJP, LPP, ZN, PC1, CU, MG, HEM, HEA, K

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain H		Bond	lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	2M	0.16	0/4709	0.29	0/6372
1	2m	0.16	0/4709	0.29	0/6372
2	2N	0.20	0/2118	0.27	0/2863
2	2n	0.20	0/2118	0.27	0/2863
3	20	0.24	0/1292	0.25	0/1759
3	2o	0.24	0/1292	0.25	0/1759
4	2P	0.23	0/1342	0.25	0/1812
4	2p	0.23	0/1342	0.25	0/1812
5	2Q	0.22	0/580	0.31	0/788
5	2q	0.22	0/580	0.31	0/788
6	2R	0.25	0/985	0.26	0/1336
6	2r	0.25	0/985	0.26	0/1336
7	2S	0.24	0/1350	0.23	0/1828
7	2s	0.24	0/1350	0.23	0/1828
8	2T	0.27	0/714	0.24	0/971
8	2t	0.27	0/714	0.24	0/971
9	2U	0.23	0/400	0.22	0/547
9	2u	0.23	0/400	0.22	0/547
10	2V	0.19	0/724	0.21	0/975
10	2v	0.19	0/724	0.21	0/975
11	3A	0.25	0/3701	0.32	0/5025
11	3a	0.25	0/3701	0.32	0/5025
12	3B	0.26	0/3967	0.26	0/5371
12	3b	0.26	0/3967	0.26	0/5371
13	3C	0.39	0/1988	0.44	0/2712
13	3c	0.39	0/1988	0.44	0/2712
14	3D	0.30	0/872	0.28	0/1182
14	3d	0.30	0/872	0.28	0/1182
15	3E	0.31	0/848	0.25	0/1148
15	3e	0.31	0/848	0.25	0/1148
16	3F	0.31	0/767	0.30	0/1042

Mol Chain		Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
16	3f	0.31	0/767	0.30	0/1042	
17	3G	0.31	0/3098	0.30	0/4231	
17	3g	0.31	0/3098	0.30	0/4231	
18	3H	0.22	0/2713	0.32	0/3693	
18	3h	0.22	0/2713	0.32	0/3693	
19	3I	0.28	0/1514	0.33	0/2045	
19	3i	0.28	0/1514	0.33	0/2045	
20	3J	0.20	0/776	0.29	0/1045	
20	3j	0.20	0/776	0.29	0/1045	
21	3K	0.23	0/627	0.28	0/847	
21	3k	0.23	0/627	0.28	0/847	
22	3L	0.26	0/521	0.50	2/713~(0.3%)	
22	31	0.26	0/521	0.50	2/713~(0.3%)	
23	40	0.20	0/2060	0.27	0/2822	
23	41	0.20	0/2060	0.27	0/2822	
24	4A	0.18	0/863	0.25	0/1166	
24	4a	0.18	0/863	0.25	0/1166	
25	4B	0.20	0/751	0.31	0/1013	
25	4b	0.20	0/751	0.31	0/1013	
26	4C	0.18	0/653	0.31	0/891	
26	4c	0.18	0/653	0.31	0/891	
27	4D	0.19	0/819	0.24	0/1110	
27	4d	0.19	0/819	0.23	0/1110	
28	$4\mathrm{E}$	0.20	0/1353	0.27	0/1824	
28	4e	0.20	0/1353	0.27	0/1824	
29	$4\mathrm{F}$	0.18	0/638	0.26	0/870	
29	4f	0.18	0/638	0.26	0/870	
30	4G	0.18	0/883	0.22	0/1199	
30	4g	0.18	0/883	0.22	0/1199	
31	$4\mathrm{H}$	0.18	0/1149	0.22	0/1565	
31	4h	0.18	0/1149	0.22	0/1565	
32	4I	0.21	0/1757	0.24	0/2386	
32	4i	0.21	0/1757	0.24	0/2386	
33	4J	0.20	0/1573	0.24	0/2131	
33	4j	0.20	$0/15\overline{73}$	0.24	$0/213\overline{1}$	
34	4K	0.17	0/745	0.22	0/1017	
34	4k	0.17	0/745	0.22	0/1017	
35	4L	0.21	0/1131	0.26	0/1537	
35	41	0.21	0/1131	0.26	0/1537	
36	4M	0.18	0/800	0.22	0/1097	
36	4m	0.18	0/800	0.22	0/1097	
37	4N	0.19	0/1055	0.27	0/1436	
37	4n	0.19	0/1055	0.27	0/1436	

Mal	Chain	Bond	lengths	B	ond angles
INIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
38	40	0.20	0/400	0.24	0/549
38	40	0.20	0/400	0.24	0/549
39	4P	0.19	0/1551	0.25	0/2106
39	4p	0.19	0/1551	0.25	0/2106
40	4Q	0.19	0/3774	0.30	0/5155
40	4q	0.19	0/3774	0.30	0/5155
41	4R	0.18	0/958	0.20	0/1301
41	4r	0.18	0/958	0.20	0/1301
42	4S	0.18	0/560	0.23	0/760
42	4s	0.18	0/560	0.23	0/760
43	4T	0.20	0/1024	0.27	0/1391
43	4t	0.20	0/1024	0.27	0/1391
44	4U	0.16	0/790	0.31	0/1073
44	4u	0.16	0/790	0.31	0/1073
45	4V	0.19	0/1600	0.24	0/2183
45	4v	0.19	0/1600	0.24	0/2183
46	4W	0.19	0/1240	0.29	0/1686
46	4w	0.19	0/1240	0.29	0/1686
47	4X	0.19	0/1912	0.23	0/2592
47	4x	0.19	0/1912	0.23	0/2592
48	4Y	0.19	0/929	0.24	0/1261
48	4y	0.19	0/929	0.24	0/1261
49	4Z	0.22	0/1639	0.24	0/2233
49	4z	0.22	0/1639	0.24	0/2233
All	All	0.23	0/136426	0.28	$4/185318 \ (0.0\%)$

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	2N	0	1
2	2n	0	1
4	2P	0	1
4	2p	0	1
6	2R	0	1
6	2r	0	1
11	3A	0	1
11	3a	0	1
13	3C	0	1
13	3c	0	1

Mol	Chain	#Chirality outliers	#Planarity outliers
18	3H	0	2
18	3h	0	2
26	4C	0	1
26	4c	0	1
28	4E	0	1
28	4e	0	1
All	All	0	18

There are no bond length outliers.

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
22	3L	609	PRO	N-CA-CB	7.75	110.20	103.31
22	31	609	PRO	N-CA-CB	7.74	110.19	103.31
22	3L	605	PRO	N-CA-CB	6.97	109.94	103.46
22	31	605	PRO	N-CA-CB	6.95	109.92	103.46

There are no chirality outliers.

5 of 18 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	2N	73	ARG	Sidechain
4	2P	41	ARG	Sidechain
6	2R	5	ARG	Sidechain
11	3A	71	ARG	Sidechain
13	3C	180	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	2M	4610	0	4538	28	0
1	2m	4610	0	4538	29	0
2	2N	2068	0	2025	6	0
2	2n	2068	0	2025	7	0
3	20	1254	0	1263	8	0

Conti	nuea fron	<i>i previous</i>	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	2o	1254	0	1263	7	0
4	2P	1309	0	1367	11	0
4	2p	1309	0	1367	11	0
5	2Q	564	0	567	6	0
5	2q	564	0	567	6	0
6	2R	950	0	935	12	0
6	2r	950	0	935	10	0
7	2S	1323	0	1261	9	0
7	2s	1323	0	1261	9	0
8	2T	695	0	672	9	0
8	2t	695	0	672	9	0
9	2U	390	0	369	7	0
9	2u	390	0	369	6	0
10	2V	709	0	723	3	0
10	2v	709	0	723	4	0
11	3A	3622	0	3508	8	0
11	3a	3622	0	3508	8	0
12	3B	3884	0	3842	10	0
12	3b	3884	0	3842	9	0
13	3C	1921	0	1816	8	0
13	3c	1921	0	1816	6	0
14	3D	836	0	798	5	0
14	3d	836	0	798	5	0
15	3E	813	0	776	5	0
15	3e	813	0	776	4	0
16	3F	734	0	704	2	0
16	3f	734	0	704	2	0
17	3G	3016	0	3162	28	0
17	3g	3016	0	3162	28	0
18	3H	2628	0	2541	26	0
18	3h	2628	0	2541	26	0
19	3I	1472	0	1436	7	0
19	3i	1472	0	1436	7	0
20	3J	755	0	693	1	0
20	3i	755	0	693	1	0
21	3K	608	0	617	2	0
21	3k	608	0	617	3	0
$\frac{1}{22}$	3L	509	0	475	5	0
${22}$	31	509	0	475	5	0
23	40	2004	0	2032	17	0
23	41	2001	0	2032	17	0
20 24	44	841	0	766	9	0
<u> </u>	1/1			100		0

Conti	nuea fron	<i>i previous</i>	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
24	4a	841	0	766	9	0
25	4B	732	0	746	6	0
25	4b	732	0	746	6	0
26	4C	626	0	575	10	0
26	4c	626	0	575	10	0
27	4D	787	0	745	6	0
27	4d	787	0	745	5	0
28	4E	1313	0	1269	7	0
28	4e	1313	0	1269	7	0
29	$4\mathrm{F}$	613	0	591	3	0
29	4f	613	0	591	3	0
30	4G	854	0	811	1	0
30	4g	854	0	811	1	0
31	4H	1125	0	1112	6	0
31	4h	1125	0	1112	7	0
32	4I	1695	0	1593	7	0
32	4i	1695	0	1593	8	0
33	4J	1517	0	1435	10	0
33	4j	1517	0	1435	11	0
34	4K	722	0	760	5	0
34	4k	722	0	760	5	0
35	4L	1083	0	1027	5	0
35	41	1083	0	1027	5	0
36	4M	773	0	797	7	0
36	4m	773	0	797	7	0
37	4N	1025	0	1018	6	0
37	4n	1025	0	1018	6	0
38	40	383	0	368	3	0
38	40	383	0	368	3	0
39	4P	1504	0	1461	8	0
39	4p	1504	0	1461	9	0
40	4Q	3687	0	3955	41	0
40	4q	3687	0	3955	42	0
41	4R	916	0	854	2	0
41	4r	916	0	854	3	0
42	4S	541	0	489	1	0
42	4s	541	0	489	0	0
43	4T	983	0	902	9	0
43	4t	983	0	902	9	0
44	4U	758	0	713	10	0
44	4u	758	0	713	9	0
45	4V	1539	0	1482	11	0

Conti	nuea from	<i>i previous</i>	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
45	4v	1539	0	1482	11	0
46	4W	1193	0	1164	6	0
46	4w	1193	0	1164	6	0
47	4X	1860	0	1764	16	0
47	4x	1860	0	1764	17	0
48	4Y	905	0	835	5	0
48	4y	905	0	835	5	0
49	4Z	1582	0	1548	4	0
49	4z	1582	0	1548	4	0
50	2M	53	0	31	11	0
50	2m	53	0	31	11	0
51	2N	4	0	0	0	0
51	2n	4	0	0	0	0
51	3H	4	0	0	1	0
51	3h	4	0	0	1	0
52	2N	8	0	0	0	0
52	2n	8	0	0	0	0
53	2N	7	0	0	0	0
53	2n	7	0	0	0	0
54	2N	1	0	0	0	0
54	2n	1	0	0	0	0
54	4Q	1	0	0	0	0
54	4q	1	0	0	0	0
55	20	51	0	82	0	0
55	2P	102	0	164	0	0
55	2R	51	0	82	0	0
55	20	51	0	82	0	0
55	2p	102	0	164	0	0
55	2r	51	0	82	0	0
55	3C	51	0	82	1	0
55	3F	51	0	82	1	0
55	3c	51	0	82	1	0
55	3f	51	0	82	1	0
55	40	153	0	246	1	0
55	41	153	0	246	1	0
55	4D	51	0	82	0	0
55	4Q	102	0	164	2	0
55	4R	51	0	82	0	0
55	4S	51	0	82	0	0
55	4W	51	0	82	0	0
55	4Z	51	0	82	0	0
55	4d	51	0	82	0	0

		i previous	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
55	4q	102	0	164	2	0
55	4r	51	0	82	0	0
55	4s	51	0	82	0	0
55	4w	51	0	82	0	0
55	4z	51	0	82	0	0
56	20	108	0	176	5	0
56	2P	54	0	88	2	0
56	2R	54	0	88	1	0
56	2T	54	0	88	1	0
56	20	108	0	176	5	0
56	2p	54	0	88	2	0
56	2r	54	0	88	1	0
56	2t	54	0	88	1	0
56	3A	108	0	176	2	0
56	3H	54	0	88	0	0
56	3a	108	0	176	2	0
56	3h	54	0	88	0	0
56	4E	54	0	88	2	0
56	4e	54	0	88	2	0
57	20	100	0	156	1	0
57	2P	100	0	156	3	0
57	2Q	100	0	156	2	0
57	2U	100	0	156	2	0
57	20	100	0	156	1	0
57	2p	100	0	156	3	0
57	2q	100	0	156	2	0
57	2u	100	0	156	2	0
57	3D	200	0	312	0	0
57	3E	300	0	468	0	0
57	3G	100	0	156	5	0
57	3H	100	0	156	1	0
57	3I	300	0	468	3	0
57	3L	200	0	312	1	0
57	3d	200	0	312	0	0
57	3e	300	0	468	0	0
57	3g	100	0	156	4	0
57	3h	100	0	156	1	0
57	3i	300	0	468	3	0
57	31	200	0	312	1	0
57	4E	100	0	156	0	0
57	4J	100	0	156	1	0
57	4K	200	0	312	2	0

Conti	nueu jron	<i>i previous</i>	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
57	4L	100	0	156	0	0
57	4M	100	0	156	0	0
57	4Q	200	0	312	3	0
57	4S	100	0	156	0	0
57	4T	100	0	156	3	0
57	4U	100	0	156	2	0
57	4W	200	0	312	1	0
57	4Z	100	0	156	0	0
57	4e	100	0	156	0	0
57	4j	100	0	156	1	0
57	4k	200	0	312	3	0
57	41	100	0	156	0	0
57	4m	100	0	156	0	0
57	4q	200	0	312	3	0
57	4s	100	0	156	1	0
57	4t	100	0	156	3	0
57	4u	100	0	156	2	0
57	4w	200	0	312	1	0
57	4z	100	0	156	0	0
58	2S	53	0	74	2	0
58	2s	53	0	74	2	0
58	3D	53	0	74	12	0
58	3G	106	0	148	15	0
58	3d	53	0	74	12	0
58	3g	106	0	148	15	0
59	3C	43	0	31	6	0
59	3c	43	0	31	5	0
60	3G	86	0	60	5	0
60	3g	86	0	60	5	0
61	40	43	0	0	1	0
61	41	43	0	0	1	0
62	4C	44	0	67	0	0
62	4D	44	0	67	1	0
62	4c	44	0	67	0	0
62	4d	44	0	67	1	0
63	4N	2	0	0	0	0
63	4n	2	0	0	0	0
64	4Q	1	0	0	0	0
64	4q	1	0	0	0	0
65	4Q	1	0	0	0	0
65	4q	1	0	0	0	0
66	4Q	120	0	108	6	0

 α ntia 1 [

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
66	4q	120	0	108	6	0
67	4Q	2	0	0	0	0
67	4q	2	0	0	0	0
68	$4\mathrm{T}$	2	0	0	0	0
68	4X	1	0	0	0	0
68	4t	2	0	0	0	0
68	4x	1	0	0	0	0
All	All	142424	0	144688	735	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 735 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:2M:76:HIS:CE1	50:2M:701:FAD:HM82	1.21	1.70
1:2m:76:HIS:CE1	50:2m:701:FAD:HM82	1.21	1.65
1:2m:76:HIS:NE2	50:2m:701:FAD:C8M	1.75	1.46
1:2M:76:HIS:NE2	50:2M:701:FAD:C8M	1.75	1.45
13:3C:76:CYS:SG	59:3C:301:HEC:HAC	1.67	1.34

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	2M	602/604~(100%)	586~(97%)	15 (2%)	1 (0%)	44	52
1	2m	602/604~(100%)	586~(97%)	15 (2%)	1 (0%)	44	52
2	2N	257/259~(99%)	250~(97%)	7 (3%)	0	100	100
2	2n	257/259~(99%)	250 (97%)	7(3%)	0	100	100

Continued from previous page	Continued	from	previous	page
------------------------------	-----------	------	----------	------

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	20	158/160~(99%)	156 (99%)	2 (1%)	0	100	100
3	20	158/160~(99%)	157 (99%)	1 (1%)	0	100	100
4	2P	156/158~(99%)	155~(99%)	1 (1%)	0	100	100
4	2p	156/158~(99%)	155 (99%)	1 (1%)	0	100	100
5	2Q	67/69~(97%)	63 (94%)	4 (6%)	0	100	100
5	2q	67/69~(97%)	63 (94%)	4 (6%)	0	100	100
6	2R	115/117~(98%)	115 (100%)	0	0	100	100
6	2r	115/117~(98%)	115 (100%)	0	0	100	100
7	2S	163/165~(99%)	162 (99%)	1 (1%)	0	100	100
7	2s	163/165~(99%)	162 (99%)	1 (1%)	0	100	100
8	2T	80/82~(98%)	77 (96%)	3 (4%)	0	100	100
8	2t	80/82~(98%)	77 (96%)	3 (4%)	0	100	100
9	2U	46/48~(96%)	46 (100%)	0	0	100	100
9	2u	46/48~(96%)	46 (100%)	0	0	100	100
10	2V	85/87~(98%)	84 (99%)	1 (1%)	0	100	100
10	2v	85/87~(98%)	84 (99%)	1 (1%)	0	100	100
11	3A	452/454~(100%)	447 (99%)	5 (1%)	0	100	100
11	3a	452/454~(100%)	447 (99%)	5 (1%)	0	100	100
12	3B	494/496~(100%)	489 (99%)	5 (1%)	0	100	100
12	3b	494/496~(100%)	489 (99%)	5 (1%)	0	100	100
13	3C	239/241~(99%)	235 (98%)	4 (2%)	0	100	100
13	3c	239/241~(99%)	235 (98%)	4 (2%)	0	100	100
14	3D	93/95~(98%)	92 (99%)	1 (1%)	0	100	100
14	3d	93/95~(98%)	92 (99%)	1 (1%)	0	100	100
15	3E	90/92~(98%)	90 (100%)	0	0	100	100
15	3e	90/92~(98%)	90 (100%)	0	0	100	100
16	3F	82/84~(98%)	81 (99%)	1 (1%)	0	100	100
16	3f	82/84~(98%)	81 (99%)	1 (1%)	0	100	100
17	3G	352/354~(99%)	340 (97%)	12 (3%)	0	100	100
17	3g	352/354~(99%)	340 (97%)	12 (3%)	0	100	100
18	3H	324/326~(99%)	314 (97%)	10 (3%)	0	100	100

Continued	from	nrevious	naae
Commueu	jiom	previous	puge

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
18	3h	324/326~(99%)	314 (97%)	10 (3%)	0	100	100
19	3I	174/176~(99%)	169 (97%)	5 (3%)	0	100	100
19	3i	174/176~(99%)	169~(97%)	5 (3%)	0	100	100
20	3J	90/92~(98%)	90 (100%)	0	0	100	100
20	3j	90/92~(98%)	90 (100%)	0	0	100	100
21	3K	77/79~(98%)	77 (100%)	0	0	100	100
21	3k	77/79~(98%)	77 (100%)	0	0	100	100
22	3L	67/69~(97%)	64 (96%)	2 (3%)	1 (2%)	8	6
22	31	67/69~(97%)	64 (96%)	2 (3%)	1 (2%)	8	6
23	40	228/230~(99%)	226 (99%)	2 (1%)	0	100	100
23	41	228/230~(99%)	226 (99%)	2 (1%)	0	100	100
24	4A	98/100~(98%)	98 (100%)	0	0	100	100
24	4a	98/100~(98%)	98 (100%)	0	0	100	100
25	4B	91/93~(98%)	90 (99%)	1 (1%)	0	100	100
25	4b	91/93~(98%)	90 (99%)	1 (1%)	0	100	100
26	4C	73/75~(97%)	72 (99%)	1 (1%)	0	100	100
26	4c	73/75~(97%)	72 (99%)	1 (1%)	0	100	100
27	4D	88/90~(98%)	88 (100%)	0	0	100	100
27	4d	88/90~(98%)	88 (100%)	0	0	100	100
28	$4\mathrm{E}$	150/152~(99%)	146 (97%)	4 (3%)	0	100	100
28	4e	150/152~(99%)	146 (97%)	4 (3%)	0	100	100
29	$4\mathrm{F}$	71/73~(97%)	69 (97%)	2 (3%)	0	100	100
29	4f	71/73~(97%)	69 (97%)	2 (3%)	0	100	100
30	$4\mathrm{G}$	98/100~(98%)	97 (99%)	1 (1%)	0	100	100
30	4g	98/100~(98%)	97 (99%)	1 (1%)	0	100	100
31	$4\mathrm{H}$	139/141~(99%)	138 (99%)	1 (1%)	0	100	100
31	4h	139/141~(99%)	138 (99%)	1 (1%)	0	100	100
32	4I	$194/\overline{196}\ (\overline{99\%})$	193 (100%)	1 (0%)	0	100	100
32	4i	$\overline{194/196}~(99\%)$	193 (100%)	1 (0%)	0	100	100
33	4J	184/186~(99%)	178 (97%)	6 (3%)	0	100	100
33	4j	$184/186 \ (\overline{99\%})$	178 (97%)	6 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
34	4K	91/93~(98%)	89~(98%)	2 (2%)	0	100	100
34	4k	91/93~(98%)	90 (99%)	1 (1%)	0	100	100
35	4L	120/122~(98%)	120 (100%)	0	0	100	100
35	41	120/122~(98%)	120 (100%)	0	0	100	100
36	$4\mathrm{M}$	96/98~(98%)	96 (100%)	0	0	100	100
36	4m	96/98~(98%)	96 (100%)	0	0	100	100
37	4N	129/131~(98%)	128 (99%)	1 (1%)	0	100	100
37	4n	129/131~(98%)	128 (99%)	1 (1%)	0	100	100
38	40	45/47~(96%)	45 (100%)	0	0	100	100
38	40	45/47~(96%)	45 (100%)	0	0	100	100
39	4P	178/180~(99%)	174 (98%)	4 (2%)	0	100	100
39	4p	178/180~(99%)	174 (98%)	4 (2%)	0	100	100
40	4Q	457/459~(100%)	443 (97%)	14 (3%)	0	100	100
40	4q	457/459~(100%)	442 (97%)	15 (3%)	0	100	100
41	4R	101/103~(98%)	101 (100%)	0	0	100	100
41	4r	101/103~(98%)	101 (100%)	0	0	100	100
42	4S	63/65~(97%)	61 (97%)	2 (3%)	0	100	100
42	4s	63/65~(97%)	61 (97%)	2 (3%)	0	100	100
43	4T	119/121~(98%)	116 (98%)	3 (2%)	0	100	100
43	4t	119/121~(98%)	116 (98%)	3 (2%)	0	100	100
44	4U	89/91~(98%)	88 (99%)	1 (1%)	0	100	100
44	4u	89/91~(98%)	88 (99%)	1 (1%)	0	100	100
45	4V	183/185~(99%)	182 (100%)	1 (0%)	0	100	100
45	4v	183/185~(99%)	182 (100%)	1 (0%)	0	100	100
46	4 W	139/141~(99%)	136 (98%)	3 (2%)	0	100	100
46	4w	139/141~(99%)	136 (98%)	3 (2%)	0	100	100
47	4X	224/226~(99%)	221 (99%)	3 (1%)	0	100	100
47	4x	224/226~(99%)	221 (99%)	3 (1%)	0	100	100
48	4Y	105/107~(98%)	101 (96%)	4 (4%)	0	100	100
48	4y	105/107~(98%)	101 (96%)	4 (4%)	0	100	100
49	4Z	184/186~(99%)	181 (98%)	3 (2%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
49	4z	184/186~(99%)	181 (98%)	3 (2%)	0	100	100
All	All	16000/16196~(99%)	15719 (98%)	277 (2%)	4 (0%)	100	100

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
22	3L	604	PHE
22	31	604	PHE
1	2M	26	ALA
1	2m	26	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	2M	481/481~(100%)	478~(99%)	3~(1%)	84	91
1	$2\mathrm{m}$	481/481~(100%)	478~(99%)	3~(1%)	84	91
2	2N	221/221~(100%)	219~(99%)	2 (1%)	75	86
2	2n	221/221~(100%)	219~(99%)	2 (1%)	75	86
3	2O	130/130~(100%)	130 (100%)	0	100	100
3	20	130/130~(100%)	130 (100%)	0	100	100
4	2P	139/139~(100%)	139 (100%)	0	100	100
4	2p	139/139~(100%)	139~(100%)	0	100	100
5	2Q	60/60~(100%)	60 (100%)	0	100	100
5	2q	60/60~(100%)	60 (100%)	0	100	100
6	2R	100/100~(100%)	100 (100%)	0	100	100
6	2r	100/100~(100%)	100 (100%)	0	100	100
7	2S	144/144 (100%)	144 (100%)	0	100	100
7	2s	144/144~(100%)	144 (100%)	0	100	100
8	2T	$7\overline{3}/73~(100\%)$	73 (100%)	0	100	100

α \cdot 1	C		
Continued	trom	previous	page
	J	1	I J

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
8	2t	73/73~(100%)	73~(100%)	0	100	100
9	$2\mathrm{U}$	43/43~(100%)	43 (100%)	0	100	100
9	2u	43/43~(100%)	43 (100%)	0	100	100
10	2V	76/76~(100%)	76 (100%)	0	100	100
10	2v	76/76~(100%)	76 (100%)	0	100	100
11	3A	386/386~(100%)	386 (100%)	0	100	100
11	3a	386/386~(100%)	386 (100%)	0	100	100
12	3B	423/423 (100%)	422 (100%)	1 (0%)	92	96
12	3b	423/423 (100%)	422 (100%)	1 (0%)	92	96
13	3C	204/204~(100%)	203 (100%)	1 (0%)	86	93
13	3c	204/204~(100%)	203 (100%)	1 (0%)	86	93
14	3D	88/88 (100%)	88 (100%)	0	100	100
14	3d	88/88 (100%)	88 (100%)	0	100	100
15	3E	81/81 (100%)	81 (100%)	0	100	100
15	3e	81/81 (100%)	81 (100%)	0	100	100
16	3F	72/72~(100%)	72 (100%)	0	100	100
16	3f	72/72~(100%)	72 (100%)	0	100	100
17	3G	336/336~(100%)	334 (99%)	2 (1%)	84	91
17	3g	336/336~(100%)	334 (99%)	2 (1%)	84	91
18	3H	280/280~(100%)	280 (100%)	0	100	100
18	3h	280/280~(100%)	280 (100%)	0	100	100
19	3I	154/154~(100%)	153 (99%)	1 (1%)	84	91
19	3i	154/154~(100%)	153 (99%)	1 (1%)	84	91
20	3J	79/79~(100%)	79 (100%)	0	100	100
20	3ј	79/79~(100%)	79 (100%)	0	100	100
21	3К	67/67~(100%)	67 (100%)	0	100	100
21	3k	67/67~(100%)	67 (100%)	0	100	100
22	3L	48/60 (80%)	48 (100%)	0	100	100
22	31	48/60~(80%)	48 (100%)	0	100	100
23	40	229/229~(100%)	229 (100%)	0	100	100
23	41	229/229~(100%)	229 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
24	4A	91/91~(100%)	90 (99%)	1 (1%)	70	82
24	4a	91/91~(100%)	90~(99%)	1 (1%)	70	82
25	4B	77/77~(100%)	75~(97%)	2(3%)	41	54
25	4b	77/77~(100%)	75~(97%)	2(3%)	41	54
26	$4\mathrm{C}$	64/64~(100%)	64 (100%)	0	100	100
26	4c	64/64~(100%)	64 (100%)	0	100	100
27	4D	81/81 (100%)	81 (100%)	0	100	100
27	4d	81/81 (100%)	81 (100%)	0	100	100
28	$4\mathrm{E}$	146/146 (100%)	146 (100%)	0	100	100
28	4e	146/146 (100%)	146 (100%)	0	100	100
29	$4\mathrm{F}$	63/63~(100%)	63 (100%)	0	100	100
29	4f	63/63~(100%)	63 (100%)	0	100	100
30	4G	83/83~(100%)	82 (99%)	1 (1%)	67	80
30	4g	83/83~(100%)	82 (99%)	1 (1%)	67	80
31	4H	124/124~(100%)	124 (100%)	0	100	100
31	4h	124/124~(100%)	124 (100%)	0	100	100
32	4I	180/180 (100%)	178 (99%)	2 (1%)	70	82
32	4i	180/180~(100%)	178 (99%)	2 (1%)	70	82
33	4J	148/148~(100%)	145~(98%)	3 (2%)	50	65
33	4j	148/148 (100%)	145~(98%)	3 (2%)	50	65
34	4K	77/77~(100%)	77~(100%)	0	100	100
34	4k	77/77~(100%)	77~(100%)	0	100	100
35	4L	108/108~(100%)	108 (100%)	0	100	100
35	41	108/108~(100%)	108 (100%)	0	100	100
36	$4\mathrm{M}$	85/85~(100%)	85~(100%)	0	100	100
36	4m	85/85~(100%)	85 (100%)	0	100	100
37	4N	112/112~(100%)	112 (100%)	0	100	100
37	4n	112/112 (100%)	112 (100%)	0	100	100
38	40	40/40 (100%)	40 (100%)	0	100	100
38	40	40/40~(100%)	40 (100%)	0	100	100
39	4P	163/163~(100%)	163 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
39	4p	163/163~(100%)	163 (100%)	0	100	100
40	4Q	419/419~(100%)	417 (100%)	2(0%)	86	93
40	4q	419/419 (100%)	417 (100%)	2(0%)	86	93
41	4R	92/92~(100%)	92 (100%)	0	100	100
41	4r	92/92~(100%)	92 (100%)	0	100	100
42	4S	59/59~(100%)	59 (100%)	0	100	100
42	4s	59/59~(100%)	59 (100%)	0	100	100
43	4T	102/102~(100%)	102 (100%)	0	100	100
43	4t	102/102~(100%)	102 (100%)	0	100	100
44	$4\mathrm{U}$	76/76~(100%)	75 (99%)	1 (1%)	65	78
44	4u	76/76~(100%)	75~(99%)	1 (1%)	65	78
45	4V	156/156~(100%)	154 (99%)	2 (1%)	65	78
45	4v	156/156~(100%)	154 (99%)	2 (1%)	65	78
46	4W	128/128~(100%)	128 (100%)	0	100	100
46	4w	128/128 (100%)	128 (100%)	0	100	100
47	4X	198/198~(100%)	197 (100%)	1 (0%)	86	93
47	4x	198/198~(100%)	197 (100%)	1 (0%)	86	93
48	4Y	100/100~(100%)	100 (100%)	0	100	100
48	4y	100/100~(100%)	100 (100%)	0	100	100
49	$4\mathrm{Z}$	167/167~(100%)	167 (100%)	0	100	100
49	4z	167/167~(100%)	167 (100%)	0	100	100
All	All	14106/14130 (100%)	14056 (100%)	50 (0%)	88	95

5 of 50 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	2n	80	CYS
24	4a	26	ASP
47	4x	37	HIS
2	2n	278	MET
17	$3\mathrm{g}$	251	HIS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 135 such side chains are listed below:

Mol	Chain	Res	Type
33	4j	64	HIS
35	41	96	ASN
46	4w	61	HIS
33	4J	64	HIS
32	4I	89	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 162 ligands modelled in this entry, 14 are monoatomic - leaving 148 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Dog	Tink	Bo	ond leng	ths	Bo	nd angl	es
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
55	PEE	20	202	-	50,50,50	0.77	2 (4%)	$53,\!55,\!55$	0.65	0
57	CDL	4Q	907	-	99,99,99	0.29	0	105,111,111	0.48	1 (0%)
55	PEE	4Q	910	-	50,50,50	0.77	2 (4%)	$53,\!55,\!55$	0.60	1 (1%)
57	CDL	3I	201	-	99,99,99	0.30	0	105,111,111	0.47	1 (0%)
61	AJP	41	304	-	49,49,95	1.06	2 (4%)	74,80,149	1.48	9 (12%)
50	FAD	2M	701	-	53,58,58	0.82	2 (3%)	68,89,89	1.07	4 (5%)
55	PEE	4S	102	-	50,50,50	0.76	2 (4%)	53,55,55	0.54	0
57	CDL	31	702	-	99,99,99	0.30	0	105,111,111	0.32	0

Mal	T	Chain	Dag	T : 1-	Bo	ond leng	ths	Bond angles			
IVIOI	Tybe	Chain	Res	Link	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
57	CDL	4q	907	-	99,99,99	0.29	0	105,111,111	0.48	1 (0%)	
60	HEM	3G	401	17	41,50,50	1.33	3 (7%)	45,82,82	1.43	6 (13%)	
57	CDL	4M	201	-	99,99,99	0.28	0	105,111,111	0.30	0	
57	CDL	3d	202	-	99,99,99	0.31	0	105,111,111	0.47	0	
57	CDL	3e	203	-	99,99,99	0.29	0	105,111,111	0.40	1 (0%)	
60	HEM	3G	402	17	41,50,50	1.30	2 (4%)	45,82,82	1.43	7 (15%)	
57	CDL	4S	101	-	99,99,99	0.29	0	105,111,111	0.39	0	
55	PEE	4W	203	-	50,50,50	0.75	2 (4%)	$53,\!55,\!55$	0.54	0	
57	CDL	3I	203	-	99,99,99	0.30	0	105,111,111	0.39	0	
67	PER	4Q	906	66,64	0,1,1	-	-	-			
63	CUA	4n	201	37	0,1,1	-	-	-			
55	PEE	4Z	302	-	50,50,50	0.77	2 (4%)	$53,\!55,\!55$	0.53	0	
57	CDL	4W	201	-	99,99,99	0.29	0	105,111,111	0.34	0	
57	CDL	4Z	301	-	99,99,99	0.29	0	105,111,111	0.43	1 (0%)	
57	CDL	4L	201	-	99,99,99	0.29	0	105,111,111	0.34	0	
55	PEE	2R	201	-	50,50,50	0.75	2 (4%)	53,55,55	0.49	0	
57	CDL	3e	201	-	99,99,99	0.30	0	105,111,111	0.44	0	
57	CDL	4W	202	-	99,99,99	0.29	0	105,111,111	0.33	0	
62	LPP	4d	102	-	43,43,43	0.21	0	47,48,48	0.31	0	
56	PC1	20	202	-	53,53,53	0.28	0	59,61,61	0.41	0	
55	PEE	4z	302	-	50,50,50	0.78	2 (4%)	$53,\!55,\!55$	0.53	0	
57	CDL	4k	202	-	99,99,99	0.28	0	105,111,111	0.41	0	
57	CDL	2q	101	-	99,99,99	0.29	0	105,111,111	0.37	1 (0%)	
57	CDL	3i	203	-	99,99,99	0.30	0	105,111,111	0.46	1 (0%)	
52	SF4	2n	302	2	0,12,12	-	-	-			
55	PEE	3C	302	-	50,50,50	0.77	2 (4%)	53,55,55	0.67	1 (1%)	
57	CDL	4j	301	-	99,99,99	0.29	0	105,111,111	0.43	0	
57	CDL	2o	201	-	99,99,99	0.29	0	105,111,111	0.32	0	
57	CDL	4K	201	-	99,99,99	0.28	0	105,111,111	0.33	0	
56	PC1	3H	403	-	53,53,53	0.30	0	59,61,61	0.41	0	
56	PC1	20	203	-	53,53,53	0.28	0	$59,\!61,\!61$	0.56	1(1%)	
57	CDL	4q	908	-	99,99,99	0.29	0	105,111,111	0.33	0	
62	LPP	4C	101	-	43,43,43	0.26	0	47,48,48	0.40	0	
57	CDL	3i	202	-	99,99,99	0.30	0	105,111,111	0.47	1 (0%)	
58	UQ8	2S	201	-	53,53,53	1.78	7 (13%)	64,67,67	1.60	14 (21%)	
57	CDL	3D	201	-	99,99,99	0.29	0	105,111,111	0.43	1 (0%)	
66	HEA	4q	905	67,40	57,67,67	1.41	9 (15%)	61,103,103	2.10	18 (29%)	
57	CDL	3L	702	_	99,99,99	0.31	0	105,111,111	0.32	0	
55	PEE	3F	101	-	50,50,50	0.76	2 (4%)	$53,\!55,\!55$	0.57	0	

Mal	Trung	Chain	Dec	Tinle	Bo	ond leng	ths	Bond angles			
NIOI	Tybe	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
57	CDL	3G	403	-	99,99,99	0.30	0	$105,\!111,\!111$	0.40	1 (0%)	
56	PC1	3a	502	-	53,53,53	0.30	0	59,61,61	0.40	0	
57	CDL	3i	201	-	99,99,99	0.30	0	105,111,111	0.39	0	
55	PEE	4R	201	-	50, 50, 50	0.76	2 (4%)	$53,\!55,\!55$	0.57	0	
56	PC1	3A	501	-	53,53,53	0.29	0	59,61,61	0.55	1 (1%)	
56	PC1	3a	501	-	53,53,53	0.29	0	$59,\!61,\!61$	0.55	1 (1%)	
57	CDL	4K	202	-	99,99,99	0.28	0	105,111,111	0.41	0	
51	FES	2N	301	2	0,4,4	-	-	-			
57	CDL	3H	402	-	99,99,99	0.30	0	105,111,111	0.41	0	
58	UQ8	3d	203	-	$53,\!53,\!53$	1.85	7 (13%)	64,67,67	1.71	16 (25%)	
59	HEC	3c	301	13	32,50,50	1.72	4 (12%)	24,82,82	1.51	4 (16%)	
55	PEE	2P	203	-	50,50,50	0.75	2 (4%)	$53,\!55,\!55$	0.56	0	
55	PEE	40	302	-	50,50,50	0.74	2 (4%)	$53,\!55,\!55$	0.50	0	
55	PEE	2p	203	-	50,50,50	0.75	2 (4%)	$53,\!55,\!55$	0.56	0	
57	CDL	20	204	-	99,99,99	0.29	0	105,111,111	0.32	0	
57	CDL	3L	701	-	99,99,99	0.30	0	105,111,111	0.37	0	
57	CDL	3e	202	-	99,99,99	0.29	0	105,111,111	0.37	0	
66	HEA	4Q	904	40	57,67,67	1.39	7 (12%)	$61,\!103,\!103$	2.09	19 (31%)	
56	PC1	2P	204	-	53,53,53	0.28	0	59,61,61	0.35	0	
50	FAD	$2\mathrm{m}$	701	-	$53,\!58,\!58$	0.82	2 (3%)	$68,\!89,\!89$	1.07	4 (5%)	
55	PEE	4q	910	-	$50,\!50,\!50$	0.77	2 (4%)	$53,\!55,\!55$	0.60	1 (1%)	
55	PEE	3f	101	-	50,50,50	0.76	2 (4%)	$53,\!55,\!55$	0.57	0	
55	PEE	40	303	-	50,50,50	0.77	2 (4%)	$53,\!55,\!55$	0.52	0	
66	HEA	4Q	905	67,40	57,67,67	1.41	9 (15%)	61,103,103	2.10	18 (29%)	
57	CDL	4J	301	-	99,99,99	0.29	0	105,111,111	0.43	0	
56	PC1	3A	502	-	53,53,53	0.30	0	59,61,61	0.40	0	
60	HEM	$3\mathrm{g}$	401	17	41,50,50	1.33	3 (7%)	45,82,82	1.43	7 (15%)	
57	CDL	3h	402	-	99,99,99	0.29	0	105,111,111	0.40	0	
57	CDL	3E	202	-	99,99,99	0.29	0	105,111,111	0.37	0	
57	CDL	4Q	908	-	99,99,99	0.29	0	105,111,111	0.33	0	
57	CDL	4u	501	-	99,99,99	0.29	0	105,111,111	0.43	1 (0%)	
57	CDL	3E	203	-	99,99,99	0.29	0	105,111,111	0.39	1 (0%)	
57	CDL	3g	403	_	99,99,99	0.30	0	105,111,111	0.40	1 (0%)	
55	PEE	4r	201	_	50,50,50	0.75	2 (4%)	$53,\!55,\!55$	0.57	0	
56	PC1	2t	101		53,53,53	0.29	0	59,61,61	0.34	0	
58	UQ8	2s	201	-	53,53,53	1.79	7 (13%)	64,67,67	1.60	14 (21%)	
57	CDL	4m	201	_	99,99,99	0.29	0	105,111,111	0.30	0	
60	HEM	$3\mathrm{g}$	402	17	41,50,50	1.30	2 (4%)	45,82,82	1.43	7 (15%)	

	m		Ъ	T · 1	Bond lengths Bo		nd angles			
NIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
57	CDL	4s	101	-	99,99,99	0.29	0	105,111,111	0.39	0
57	CDL	2P	201	-	99,99,99	0.30	0	105,111,111	0.33	0
55	PEE	4s	102	-	50,50,50	0.76	2 (4%)	$53,\!55,\!55$	0.54	0
63	CUA	4N	201	37	0,1,1	-	-	-		
51	FES	3h	401	18	0,4,4	-	-	-		
56	PC1	4E	202	-	53,53,53	0.29	0	59,61,61	0.44	0
58	UQ8	3G	405	-	53,53,53	1.81	5 (9%)	64,67,67	1.55	14 (21%)
67	PER	4q	906	66,64	0,1,1	-	-	-		
55	PEE	41	303	-	50,50,50	0.77	2 (4%)	$53,\!55,\!55$	0.52	0
55	PEE	41	301	-	50,50,50	0.75	2 (4%)	53,55,55	0.54	0
56	PC1	2r	202	-	53,53,53	0.29	0	59,61,61	0.45	0
57	CDL	4e	201	-	99,99,99	0.28	0	105,111,111	0.40	0
57	CDL	2u	101	-	99,99,99	0.29	0	105,111,111	0.31	0
53	F3S	2n	303	2	0,9,9	-	-	-		
57	CDL	4w	202	-	99,99,99	0.29	0	105,111,111	0.33	0
55	PEE	4q	909	-	50,50,50	0.75	2 (4%)	$53,\!55,\!55$	0.64	1 (1%)
57	CDL	3E	201	-	99,99,99	0.30	0	105,111,111	0.44	0
57	CDL	2U	101	-	99,99,99	0.29	0	105,111,111	0.31	0
62	LPP	4c	101	-	43,43,43	0.27	0	47,48,48	0.40	0
53	F3S	2N	303	2	0,9,9	-	-	-		
51	FES	2n	301	2	0,4,4	-	-	-	0.00	0
57	CDL	2p	201	-	99,99,99	0.30	0	105,111,111	0.33	0
56	PC1	2o	204	-	53,53,53	0.28	0	59,61,61	0.56	1 (1%)
66	HEA	4q	904	40	57,67,67	1.39	7 (12%)	61,103,103	2.09	19 (31%)
55	PEE	2P	202	-	$50,\!50,\!50$	0.76	2 (4%)	$53,\!55,\!55$	0.51	0
51	FES	3H	401	18	0,4,4	-	-	-		1
55	PEE	2r	201	-	50,50,50	0.75	2 (4%)	53,55,55	0.49	0
55	PEE	41	302	-	50,50,50	0.74	2 (4%)	53,55,55	0.50	0
56	PC1	3h	403	-	53,53,53	0.30	0	59,61,61	0.41	0
55	PEE	4d	101	-	50,50,50	0.75	2 (4%)	53,55,55	0.47	0
57	CDL	2Q	101	_	99,99,99	0.29	0	105,111,111	0.37	1 (0%)
62	LPP	4D	102	-	43,43,43	0.21	0	47,48,48	0.31	0
55	PEE	4D	101	-	50,50,50	0.75	2 (4%)	53,55,55	0.47	0
55	PEE	3c	302	-	50,50,50	0.77	2 (4%)	53,55,55	0.67	1 (1%)
57	CDL	4k	201	-	99,99,99	0.28	0	105,111,111	0.33	0
55	PEE	2p	202	-	50,50,50	0.76	2 (4%)	53,55,55	0.52	0
61	AJP	40	304	-	49,49,95	1.06	2 (4%)	74,80,149	1.48	9 (12%)
57	CDL	31	701	-	99,99,99	0.30	0	105,111,111	0.37	0
56	PC1	4e	202	-	53,53,53	0.29	0	59,61,61	0.45	0

Mal	Tuno	Chain	Dog	Tink	Bo	ond leng	ths	Bo	nd angl	es
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
57	CDL	3I	202	-	99,99,99	0.30	0	$105,\!111,\!111$	0.46	1 (0%)
59	HEC	3C	301	13	32,50,50	1.71	4 (12%)	24,82,82	1.51	4 (16%)
55	PEE	20	201	-	50,50,50	0.77	2 (4%)	$53,\!55,\!55$	0.65	0
56	PC1	2R	202	-	53,53,53	0.29	0	59,61,61	0.45	0
57	CDL	4w	201	-	99,99,99	0.28	0	105,111,111	0.34	0
57	CDL	4z	301	-	99,99,99	0.29	0	105,111,111	0.43	1 (0%)
52	SF4	2N	302	2	0,12,12	-	-	-		
55	PEE	4Q	909	-	50,50,50	0.75	2 (4%)	$53,\!55,\!55$	0.64	1 (1%)
57	CDL	41	201	-	99,99,99	0.29	0	105,111,111	0.34	0
57	CDL	4T	203	-	99,99,99	0.29	0	105,111,111	0.29	0
56	PC1	2p	204	-	53,53,53	0.29	0	59,61,61	0.35	0
55	PEE	4w	203	-	50,50,50	0.75	2 (4%)	$53,\!55,\!55$	0.54	0
56	PC1	2T	101	-	53,53,53	0.29	0	59,61,61	0.34	0
58	UQ8	3G	404	-	53,53,53	1.78	7 (13%)	64,67,67	1.75	16 (25%)
58	UQ8	3g	404	-	53,53,53	1.78	7 (13%)	64,67,67	1.75	16 (25%)
55	PEE	40	301	-	50,50,50	0.75	2 (4%)	$53,\!55,\!55$	0.54	0
56	PC1	2o	203	-	53,53,53	0.28	0	59,61,61	0.41	0
57	CDL	3D	202	-	99,99,99	0.31	0	105,111,111	0.47	0
58	UQ8	3D	203	-	53,53,53	1.85	7 (13%)	64,67,67	1.71	16 (25%)
57	CDL	3d	201	-	99,99,99	0.29	0	105,111,111	0.43	1 (0%)
57	CDL	4U	501	-	99,99,99	0.29	0	105,111,111	0.43	1 (0%)
58	UQ8	3g	405	-	53,53,53	1.81	7 (13%)	64,67,67	1.55	14 (21%)
57	CDL	4t	203	-	99,99,99	0.29	0	105,111,111	0.29	0
57	CDL	4E	201	-	99,99,99	0.28	0	105,111,111	0.40	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
55	PEE	20	202	-	-	19/54/54/54	-
57	CDL	4Q	907	-	-	40/110/110/110	-
55	PEE	4Q	910	-	-	14/54/54/54	-
57	CDL	3I	201	-	-	27/110/110/110	-
61	AJP	41	304	-	3/3/19/38	3/6/121/220	0/7/7/11
50	FAD	2M	701	-	-	5/30/50/50	0/6/6/6
55	PEE	4S	102	-	-	10/54/54/54	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
57	CDL	31	702	-	-	22/110/110/110	-
57	CDL	4q	907	-	-	40/110/110/110	_
60	HEM	3G	401	17	-	6/12/54/54	_
57	CDL	4M	201	-	-	17/110/110/110	_
57	CDL	3d	202	-	-	55/110/110/110	-
57	CDL	3e	203	-	-	37/110/110/110	-
60	HEM	3G	402	17	-	5/12/54/54	-
57	CDL	4S	101	-	-	20/110/110/110	-
55	PEE	4W	203	-	-	12/54/54/54	-
57	CDL	3I	203	-	-	23/110/110/110	-
55	PEE	4Z	302	-	-	26/54/54/54	-
57	CDL	4W	201	-	-	19/110/110/110	-
57	CDL	4Z	301	-	-	16/110/110/110	-
57	CDL	4L	201	-	-	16/110/110/110	-
55	PEE	2R	201	-	-	19/54/54/54	-
57	CDL	3e	201	-	-	31/110/110/110	-
57	CDL	4W	202	-	-	28/110/110/110	-
62	LPP	4d	102	-	-	5/45/45/45	-
56	PC1	20	202	-	-	9/57/57/57	-
55	PEE	4z	302	-	-	26/54/54/54	-
57	CDL	4k	202	-	-	30/110/110/110	-
57	CDL	2q	101	-	-	32/110/110/110	-
57	CDL	3i	203	-	-	40/110/110/110	-
52	SF4	2n	302	2	-	-	0/6/5/5
55	PEE	3C	302	-	-	14/54/54/54	-
57	CDL	4j	301	-	-	33/110/110/110	-
57	CDL	20	201	-	-	23/110/110/110	-
57	CDL	4K	201	-	-	29/110/110/110	-
56	PC1	3H	403	-	-	16/57/57/57	-
56	PC1	20	203	-	-	14/57/57/57	-
57	CDL	4q	908	-	-	19/110/110/110	-
62	LPP	4C	101	-	-	13/45/45/45	-
57	CDL	3i	202	-	-	27/110/110/110	-
58	UQ8	2S	201	-	-	8/51/75/75	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
57	CDL	3D	201	-	-	40/110/110/110	-
66	HEA	4q	905	67,40	-	8/32/76/76	-
57	CDL	3L	702	-	-	22/110/110/110	-
55	PEE	3F	101	-	-	16/54/54/54	-
57	CDL	3G	403	-	-	23/110/110/110	-
56	PC1	3a	502	-	-	16/57/57/57	-
57	CDL	3i	201	-	-	23/110/110/110	-
55	PEE	4R	201	-	-	16/54/54/54	-
56	PC1	3A	501	-	-	19/57/57/57	-
56	PC1	3a	501	-	-	19/57/57/57	-
57	CDL	4K	202	-	-	30/110/110/110	-
57	CDL	3H	402	-	-	15/110/110/110	-
51	FES	2N	301	2	-	-	0/1/1/1
58	UQ8	3d	203	-	-	12/51/75/75	0/1/1/1
59	HEC	3c	301	13	-	4/10/54/54	-
55	PEE	2P	203	-	-	17/54/54/54	-
55	PEE	40	302	-	-	5/54/54/54	-
55	PEE	2p	203	-	-	17/54/54/54	-
57	CDL	20	204	-	-	23/110/110/110	-
57	CDL	3L	701	-	-	30/110/110/110	-
57	CDL	3e	202	-	-	27/110/110/110	-
66	HEA	4Q	904	40	-	7/32/76/76	-
56	PC1	2P	204	-	-	4/57/57/57	-
50	FAD	2m	701	-	-	5/30/50/50	0/6/6/6
55	PEE	4q	910	-	-	14/54/54/54	-
55	PEE	3f	101	-	-	16/54/54/54	-
55	PEE	40	303	-	-	21/54/54/54	-
66	HEA	4Q	905	67,40	-	8/32/76/76	-
57	CDL	4J	301	-	-	33/110/110/110	-
56	PC1	3A	502	-	-	16/57/57/57	-
60	HEM	3g	401	17	-	6/12/54/54	-
57	CDL	3h	402	-	-	15/110/110/110	-
57	CDL	3E	202	-	-	27/110/110/110	-
57	CDL	4Q	908	-	-	19/110/110/110	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
57	CDL	4u	501	-	-	35/110/110/110	-
57	CDL	3E	203	-	-	37/110/110/110	_
57	CDL	3g	403	-	-	23/110/110/110	-
55	PEE	4r	201	-	-	16/54/54/54	-
56	PC1	2t	101	-	-	14/57/57/57	-
58	UQ8	2s	201	-	-	8/51/75/75	0/1/1/1
57	CDL	4m	201	-	-	17/110/110/110	-
60	HEM	3g	402	17	-	5/12/54/54	_
57	CDL	4s	101	-	-	20/110/110/110	-
57	CDL	2P	201	-	-	23/110/110/110	-
55	PEE	4s	102	-	-	10/54/54/54	-
51	FES	3h	401	18	_	-	0/1/1/1
56	PC1	$4\mathrm{E}$	202	-	-	11/57/57/57	-
58	UQ8	3G	405	-	-	6/51/75/75	0/1/1/1
55	PEE	41	303	-	-	21/54/54/54	_
55	PEE	41	301	-	-	16/54/54/54	-
56	PC1	2r	202	-	-	17/57/57/57	-
57	CDL	4e	201	-	-	29/110/110/110	-
57	CDL	2u	101	-	-	19/110/110/110	-
53	F3S	2n	303	2	-	-	0/3/3/3
57	CDL	4w	202	-	-	28/110/110/110	-
55	PEE	4q	909	-	-	21/54/54/54	-
57	CDL	3E	201	-	-	31/110/110/110	-
57	CDL	2U	101	-	-	19/110/110/110	-
62	LPP	4c	101	-	-	13/45/45/45	-
53	F3S	2N	303	2	-	-	0/3/3/3
51	FES	2n	301	2	-	-	0/1/1/1
57	CDL	2p	201	-	-	22/110/110/110	-
56	PC1	20	204	-	-	14/57/57/57	-
66	HEA	4q	904	40	-	7/32/76/76	-
55	PEE	2P	202	-	-	18/54/54/54	-
51	FES	3H	401	18	-	-	0/1/1/1
55	PEE	2r	201	-	-	19/54/54/54	-
55	PEE	41	302	-	-	5/54/54/54	-
56	PC1	3h	403	-	-	16/57/57/57	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
55	PEE	4d	101	-	-	16/54/54/54	-
57	CDL	2Q	101	-	-	32/110/110/110	-
62	LPP	4D	102	-	-	5/45/45/45	_
55	PEE	4D	101	-	-	16/54/54/54	_
55	PEE	3c	302	-	-	14/54/54/54	-
57	CDL	4k	201	-	-	29/110/110/110	-
55	PEE	2p	202	-	-	18/54/54/54	-
61	AJP	40	304	-	3/3/19/38	3/6/121/220	0/7/7/11
57	CDL	31	701	-	-	30/110/110/110	-
56	PC1	4e	202	-	-	11/57/57/57	_
57	CDL	3I	202	-	-	40/110/110/110	_
59	HEC	3C	301	13	-	4/10/54/54	_
55	PEE	20	201	-	-	19/54/54/54	-
56	PC1	2R	202	-	-	17/57/57/57	-
57	CDL	4w	201	-	-	19/110/110/110	-
57	CDL	4z	301	-	-	16/110/110/110	-
52	SF4	2N	302	2	-	-	0/6/5/5
55	PEE	4Q	909	-	-	21/54/54/54	-
57	CDL	41	201	-	-	16/110/110/110	-
57	CDL	$4\mathrm{T}$	203	-	-	23/110/110/110	-
56	PC1	2p	204	-	-	4/57/57/57	-
55	PEE	4w	203	-	-	12/54/54/54	-
56	PC1	2T	101	-	-	14/57/57/57	-
58	UQ8	3G	404	-	-	15/51/75/75	0/1/1/1
58	UQ8	3g	404	-	-	15/51/75/75	0/1/1/1
55	PEE	40	301	-	-	16/54/54/54	-
56	PC1	20	203	-	-	9/57/57/57	-
57	CDL	3D	202	-	-	55/110/110/110	-
58	UQ8	3D	203	-	-	12/51/75/75	0/1/1/1
57	CDL	3d	201	-	-	40/110/110/110	-
57	CDL	4U	501	-	-	35/110/110/110	-
58	UQ8	3g	405	-	-	6/51/75/75	0/1/1/1
57	CDL	4t	203	-	-	23/110/110/110	-
57	CDL	4E	201	-	-	29/110/110/110	-

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
58	3D	203	UQ8	C6-C1	10.23	1.53	1.35
58	3d	203	UQ8	C6-C1	10.21	1.53	1.35
58	3G	405	UQ8	C6-C1	9.76	1.53	1.35
58	3g	405	UQ8	C6-C1	9.76	1.53	1.35
58	2s	201	UQ8	C6-C1	9.74	1.53	1.35

The worst 5 of 176 bond length outliers are listed below:

The worst 5 of 283 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
66	4q	905	HEA	CMC-C2C-C3C	7.03	137.83	124.68
66	4Q	905	HEA	CMC-C2C-C3C	7.02	137.81	124.68
66	4q	904	HEA	CMC-C2C-C3C	6.88	137.55	124.68
66	4Q	904	HEA	CMC-C2C-C3C	6.88	137.54	124.68
66	4q	905	HEA	CMC-C2C-C1C	-6.36	118.69	128.46

5 of 6 chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
61	40	304	AJP	C28
61	40	304	AJP	C29
61	40	304	AJP	C30
61	41	304	AJP	C28
61	41	304	AJP	C29

5 of 2595 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
50	2M	701	FAD	C5B-O5B-PA-O3P
50	2M	701	FAD	N10-C1'-C2'-O2'
50	2m	701	FAD	C5B-O5B-PA-O3P
50	2m	701	FAD	N10-C1'-C2'-O2'
55	20	201	PEE	C11-C10-O2-C2

There are no ring outliers.

83 monomers are involved in 209 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
57	4Q	907	CDL	1	0
55	4Q	910	PEE	1	0
57	3I	201	CDL	3	0
61	41	304	AJP	1	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
50	2M	701	FAD	11	0
57	4q	907	CDL	1	0
60	3G	401	HEM	4	0
60	3G	402	HEM	1	0
57	4W	202	CDL	1	0
62	4d	102	LPP	1	0
56	20	202	PC1	2	0
57	4k	202	CDL	2	0
57	2q	101	CDL	2	0
55	3C	302	PEE	1	0
57	4j	301	CDL	1	0
57	20	201	CDL	1	0
57	4K	201	CDL	1	0
56	20	203	PC1	3	0
57	4q	908	CDL	2	0
57	3i	202	CDL	3	0
58	2S	201	UQ8	2	0
66	4q	905	HEA	2	0
55	3F	101	PEE	1	0
57	3G	403	CDL	5	0
56	3A	501	PC1	2	0
56	3a	501	PC1	2	0
57	4K	202	CDL	1	0
57	3H	402	CDL	1	0
58	3d	203	UQ8	12	0
59	3c	301	HEC	5	0
55	40	302	PEE	1	0
57	2O	204	CDL	1	0
57	3L	701	CDL	1	0
66	4Q	904	HEA	4	0
56	2P	204	PC1	2	0
50	2m	701	FAD	11	0
55	4q	910	PEE	1	0
55	3f	101	PEE	1	0
66	4Q	905	HEA	2	0
57	4J	301	CDL	1	0
60	3g	401	HEM	4	0
57	3h	402	CDL	1	0
57	4Q	908	CDL	2	0
57	4u	501	CDL	2	0
57	3g	403	CDL	4	0
56	2t	101	PC1	1	0

	iraca ji cii	r r · · · · ·	- as page		
Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
58	2s	201	UQ8	2	0
60	3g	402	HEM	1	0
57	4s	101	CDL	1	0
57	2P	201	CDL	3	0
51	3h	401	FES	1	0
56	4E	202	PC1	2	0
58	3G	405	UQ8	5	0
56	2r	202	PC1	1	0
57	2u	101	CDL	2	0
57	4w	202	CDL	1	0
55	4q	909	PEE	1	0
57	2U	101	CDL	2	0
57	2p	201	CDL	3	0
56	20	204	PC1	3	0
66	4q	904	HEA	4	0
51	3H	401	FES	1	0
55	41	302	PEE	1	0
57	2Q	101	CDL	2	0
62	4D	102	LPP	1	0
55	3c	302	PEE	1	0
57	4k	201	CDL	1	0
61	40	304	AJP	1	0
57	31	701	CDL	1	0
56	4e	202	PC1	2	0
59	3C	301	HEC	6	0
56	2R	202	PC1	1	0
55	4Q	909	PEE	1	0
57	4T	203	CDL	3	0
56	2p	204	PC1	2	0
56	2T	101	PC1	1	0
58	3G	404	UQ8	10	0
58	3g	404	UQ8	11	0
56	20	203	PC1	2	0
58	3D	203	UQ8	12	0
57	$4\overline{\mathrm{U}}$	501	CDL	2	0
58	3g	405	UQ8	4	0
57	4t	203	CDL	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier.

Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-50491. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

Z Index: 250

6.2.2 Raw map

X Index: 250

Y Index: 250

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 263

Z Index: 268

6.3.2 Raw map

X Index: 237

Y Index: 233

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0203. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 306 nm^3 ; this corresponds to an approximate mass of 276 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.455 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.455 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.20	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	2.77	3.39	2.84

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.77 differs from the reported value 2.2 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-50491 and PDB model 9FZL. Per-residue inclusion information can be found in section 3 on page 32.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0203 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0203).

9.4 Atom inclusion (i)

At the recommended contour level, 45% of all backbone atoms, 40% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0203) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.3970	0.3250
2M	0.2660	0.4070
2N	0.6330	0.5480
20	0.7970	0.6040
2P	0.7940	0.5970
2Q	0.7560	0.5850
2R	0.7950	0.6090
2S	0.8110	0.6220
$2\mathrm{T}$	0.8780	0.6560
$2\mathrm{U}$	0.5740	0.5030
2V	0.5780	0.4910
2m	0.2670	0.4070
2n	0.6360	0.5480
20	0.7970	0.6040
2p	0.7940	0.5950
2q	0.7540	0.5860
2r	0.7950	0.6140
2s	0.8090	0.6250
2t	0.8780	0.6580
2u	0.5700	0.5020
2v	0.5730	0.4930
3A	0.9080	0.6830
3B	0.9090	0.6720
3C	0.9180	0.6900
3D	0.7940	0.6250
3E	0.8240	0.6350
$3\mathrm{F}$	0.9370	0.6950
3G	0.9190	0.6920
3H	0.6570	0.5320
3I	0.8470	0.6510
3J	0.7730	0.5920
3K	0.9210	0.6950
3L	0.6370	0.5310
3a	0.9070	0.6850
3b	0.9100	0.6730

0.0 <0.0

1.0

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
3c	0.9180	0.6880
3d	0.7950	0.6260
3e	0.8250	0.6350
3f	0.9370	0.6940
3g	0.9190	0.6920
3h	0.6570	0.5330
3i	0.8480	0.6520
3j	0.7750	0.5900
3k	0.9210	0.6930
31	0.6370	0.5320
40	0.0000	0.0000
41	0.0000	0.0000
4A	0.0050	0.0700
4B	0.0530	0.1050
4C	0.0720	0.2140
4D	0.0270	0.1220
4E	0.0000	0.0000
4F	0.0140	0.0510
4G	0.0220	0.0640
4H	0.0000	0.0000
4I	0.0000	0.0000
4J	0.0000	0.0000
4K	0.0000	0.0000
4L	0.0000	0.0000
4M	0.0000	0.0000
4N	0.0000	0.0140
40	0.0000	0.0000
4P	0.0000	0.0050
4Q	0.0000	0.0000
4R	0.0000	0.0000
4S	0.0000	0.0000
4T	0.0000	0.0000
4U	0.0000	0.0000
4V	0.0000	0.0000
4W	0.0000	-0.0030
4X	0.0000	0.0000
4Y	0.0000	0.0000
4Z	0.0110	0.0760
4a	0.0050	0.0750
4b	0.0520	0.1020
4c	0.0690	0.2070
4d	0.0280	0.1150

Continued on next page...

Chain	Atom inclusion	Q-score
4e	0.0000	0.0000
4f	0.0140	0.0530
4g	0.0230	0.0700
4h	0.0000	0.0000
4i	0.0000	0.0000
4j	0.0000	0.0000
4k	0.0000	0.0000
41	0.0000	0.0000
4m	0.0000	0.0000
4n	0.0000	0.0130
40	0.0000	0.0000
4p	0.0000	0.0030
4q	0.0000	-0.0000
4r	0.0000	0.0000
4s	0.0000	0.0000
4t	0.0000	0.0000
4u	0.0000	0.0000
4v	0.0000	0.0000
4w	0.0000	-0.0040
4x	0.0000	0.0000
4y	0.0000	0.0000
4z	0.0100	0.0760

Continued from previous page...

