

Mar 22, 2025 - 07:28 am GMT

PDB ID	:	9F62
EMDB ID	:	EMD-50210
Title	:	Subtomogram average of the Chlamydomonas reinhardtii mitochondrial respirasome I2 III4 IV6
Authors	:	Waltz, F.; Righetto, R.; Kotecha, A.; Engel, B.D.
Deposited on	:	2024-04-30
Resolution	:	5.44 Å(reported)
This	is a	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev117
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.41.5

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 5.44 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#$ Entries)	${ m EM} { m structures} \ (\#{ m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	1A	381	98%	
1	1B	381	98%	••
1	6A	381	98%	••
1	6B	381	98%	••
2	1C	262	16%	21%
2	1D	262	24%	21%
2	6C	262	16%	21%
2	6D	262	24%	21%
3	1E	314	77%	23%

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol <u>i</u>_ 1F3 314 77% 23% 3 6E31477% 23% i 3 6F31477% 23% $1\mathrm{G}$ 60 4 98% . 4 $1\mathrm{H}$ 60 98% • 6G4 60 98% . 6H460 98% • • 51I69 99% • 12% 1J69 599% • 56I69 99% 10% 56J 69 99% • $1\mathrm{K}$ 6 7396% . • 6 1L7396% 66K7396% • 6L736 96% • 7 $1\mathrm{M}$ 4956% 94% 495 71N• 6% 93% 76M49594% 6% 76N495 • 6% 93% 8 10 5981% 19% 1P8 5981% 19% 8 6O 5981% 19% 8 6P5919% 81% 1Q9 48590% • 9% 9 1S485 • 9% 90%

Mol	Chain	Length	Quality of chain	
9	6Q	485	90%	• 9%
9	6S	485	90%	• 9%
10	1R	123	99%	
10	1T	123	99%	
10	6R	123	99%	
10	6T	123	99%	
11	2A	505	14%	
11	3A	505	100%	
11	4A	505	35%	
11	7A	505	14%	
11	8A	505	100%	
11	9A	505	34%	
12	2B	284	50%	50%
12	3B	284	50%	50%
12	4B	284	50%	50%
12	7B	284	50%	50%
12	8B	284	50%	50%
12	9B	284	50%	50%
13	$2\mathrm{C}$	153	37%	
13	3C	153	19%	
13	4C	153	88%	
13	$7\mathrm{C}$	153	37%	
13	8C	153	19%	
13	9C	153	89%	
14	2D	382	70%	30%

Continued from previous page...

Conti	Continued from previous page								
Mol	Chain	Length	Quality of chain						
14	3D	382	8%	30%					
14	4D	382	70% 30%						
14	7D	382	70% 30%						
14	8D	382	70%	30%					
14	9D	382	47%	30%					
15	$2\mathrm{E}$	175	51% · 49%						
15	3E	175	7% 51% 49%						
15	$4\mathrm{E}$	175	45% 51% • 49%						
15	$7\mathrm{E}$	175	7% 51% 49%						
15	8E	175	5% 51% • 49%						
15	$9\mathrm{E}$	175	46% 51% • 49%						
16	$2\mathrm{F}$	96	90%	10%					
16	3F	96	90%	10%					
16	$4\mathrm{F}$	96	51% 90%	10%					
16	$7\mathrm{F}$	96	90%	10%					
16	8F	96	90%	10%					
16	$9\mathrm{F}$	96	90%	10%					
17	$2\mathrm{G}$	125	72%	27%					
17	$3\mathrm{G}$	125	70% •	27%					
17	$4\mathrm{G}$	125	70% •	27%					
17	$7\mathrm{G}$	125	72%	27%					
17	8G	125	70% ·	27%					
17	$9\mathrm{G}$	125	60% 70% •	27%					
18	$2\mathrm{H}$	148	77%	23%					
18	3H	148	77%	23%					

Continue	nued from	n previous	page				
Mol	Chain	Length	Quality of chain				
10		1.10	75%				
18	4H	148	77%	23%			
19	71	1/9	28%	224/			
10	(11	140	27%	23%			
18	8H	148	77%	23%			
			76%				
18	$9\mathrm{H}$	148	77%	23%			
10		101	19%				
19	21	101	71%	29%			
10	्य	101		2004			
19	- 51	101	51%	29%			
19	4I	101	71%	29%			
			19%				
19	7I	101	71%	29%			
10		101	5%				
19	81	101	71%	29%			
10	0I	101	52%	2001			
19	91	101	17%	29%			
20	2.J	105	99%				
20	3J	105	99%				
20	4.7	105	47%				
20	4J	105	96%	•			
20	71	105	00%				
20	10	100	99%	•			
20	8J	105	99%				
			48%				
20	9J	105	96%	·			
01	ar	50	40%				
21	2K	58	81%	19%			
91	3K	58	010/	109/			
21	011		64%	1976			
21	$4\mathrm{K}$	58	81%	19%			
			38%				
21	7K	58	81%	19%			
01	017	50	12%				
21	8K	58	81%	19%			
21	9K	58	910/	10%			
<i>4</i> 1	517	00	11%	T3.0			
22	2L	87	87%	13%			
			10%				
22	3L	87	90%	10%			
22	4.1	07	46%				
22	4L	87	90%	10%			

Mol	Chain	Length	Quality of chain	
22	7L	87	87%	13%
22	81.	87	10%	10%
	01	07	47%	1076
22	9L	87	90%	10%
23	5A	282	85%	15%
23	А	282	85%	15%
24	$5\mathrm{B}$	484	72% 90%	10%
24	В	484	90%	10%
25	$5\mathrm{C}$	733	94%	6%
25	С	733	28%	6%
26	5D	282	77%	23%
26	D	282	77%	23%
27	5E	467	7%	17%
27	E	467	7%	17%
28	5F	164	96%	
28	F	164		
20	50	221	9%	
29	36	231	10%	14%
29	G	231	86%	14%
30	5H	118	76%	24%
30	Н	118	76%	24%
31	5I	165	82%	18%
31	Ι	165	8%	18%
32	$5 \mathrm{J}$	128	66%	34%
32	5r	128	6 9%	31%
32	J	128	66%	34%
32	r	128	69%	31%

Continued from previous page...

Continued from previous page... Chain Length Quality of chain Mol 7% 33 5K13886% 14% 7% 33Κ 13886% 14% 22% 345L187 88% 12% 22% L 3418788% 12% 31% 355M15479% 21% 30% 35М 15479% 21% 13% 36 5N15696% 12% Ν 36 15696% • 23% 50101 3799% 22% Ο 3710199% ÷ 5P38397 91% 9% -Р 38397 91% 9% 5% 395Q29298% • 6% Q 3929298% . 5R40387 100% ÷ 40R 387 100% 5S27941 48% 52% \mathbf{S} 2794148% 52% 5T42443100% Т 42443100% 435U22746% 54% 43U 22746% 54% 5V54644100% V 54644100% 5W4516297%

Mol	Chain	Length	Quality of chain	
45	W	162	97%	•
46	5X	149	84%	16%
46	Х	149	84%	16%
47	5Y	64	• 84%	16%
47	Y	64	84%	16%
48	$5\mathrm{Z}$	124	86%	14%
48	Z	124	86%	14%
49	5a	129	63% •	36%
49	a	129	62% ·	36%
50	$5\mathrm{b}$	172	• 84%	16%
50	b	172	84%	16%
51	5c	67	88%	12%
51	с	67	88%	12%
52	5d	86	99%	
52	d	86	99%	
53	5e	219	99%	
53	е	219	99%	
54	5f	65	<mark>6%</mark> 98%	·
54	f	65	8%	
55	$5\mathrm{g}$	55	91%	9%
55	g	55	91%	9%
56	5h	142	76%	24%
56	h	142	76%	24%
57	5i	81	94%	6%
57	i	81	94%	6%

Continued from previous page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
58	5j	86	• 99%	·
58	j	86	• 99%	·
59	5k	117	• 100%	
59	k	117	• 100%	
60	51	121	95%	
60	1	121	95%	
61	$5\mathrm{m}$	142	97%	
61	m	142	97%	
62	5n	106	8%	•
62	n	106	8%	·
63	50	155	98%	
63	0	155	98%	
64	$5\mathrm{p}$	130	99%	
64	р	130	99%	
65	5q	197	80%	20%
65	q	197	80%	20%
66	5s	312	100%	
66	s	312	100%	
67	5t	279	• 91%	9%
67	t	279	• 91%	9%
68	5u	229	99%	
68	u	229	99%	
69	5v	45	100%	
69	v	45	100%	
70	5w	109	59%	41%

Contr	ontinuea from previous page							
Mol	Chain	Length	Quality of	chain				
70	W	109	59%	41%				
71	5x	157	53%	47%				
71	х	157	53%	47%				
72	5y	118	97%					
72	у	118	97%					

2 Entry composition (i)

There are 85 unique types of molecules in this entry. The entry contains 292492 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			AltConf	Trace
1	1 Δ	376	Total	С	Ν	0	S	0	0
1	17	510	2958	1984	466	491	17	0	0
1	1R	376	Total	С	Ν	Ο	S	0	0
1	ID	510	2958	1984	466	491	17	0	0
1	61	276	Total	С	Ν	0	S	0	0
1	UA	570	2958	1984	466	491	17	0	0
1	6P	276	Total	С	Ν	Ο	S	0	0
	UD	570	2958	1984	466	491	17	U	U

• Molecule 1 is a protein called Cytochrome b.

• Molecule 2 is a protein called Cytochrome b-c1 complex subunit Rieske, mitochondrial.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
9	10	207	Total	С	Ν	0	S	0	0
	10	201	1602	1017	279	299	7	0	0
9	1D	207	Total	С	Ν	0	S	0	0
	ID	207	1602	1017	279	299	7	0	0
0	6C	207	Total	С	Ν	0	S	0	0
	00	207	1602	1017	279	299	7	0	0
0	6D	207	Total	С	Ν	0	S	0	0
	UD	207	1602	1017	279	299	7		U

• Molecule 3 is a protein called Cytochrome c1.

Mol	Chain	Residues		At	oms			AltConf	Trace
3	1F	243	Total	С	Ν	0	S	0	0
0	112	240	1898	1204	326	356	12	0	0
3	1F	2/3	Total	С	Ν	Ο	S	0	0
0	11	240	1898	1204	326	356	12	0	0
3	6F	243	Total	С	Ν	0	S	0	0
0	0E	240	1898	1204	326	356	12	0	0
2	бF	242	Total	С	Ν	0	S	0	0
3	UL	240	1898	1204	326	356	12	0	U

• Molecule 4 is a protein called Complex III subunit 9.

Mol	Chain	Residues		Ato	ms		AltConf	Trace	
4	10	50	Total	С	Ν	Ο	\mathbf{S}	0	0
4	10		486	316	79	88	3	0	0
4	1日	50	Total	С	Ν	Ο	\mathbf{S}	0	0
4	111		486	316	79	88	3	0	0
4	бC	50	Total	С	Ν	Ο	\mathbf{S}	0	0
4	00		486	316	79	88	3	0	0
4	бН	50	Total	С	Ν	Ο	S	0	0
4	011		486	316	79	88	3	0	0

• Molecule 5 is a protein called Cytochrome b-c1 complex subunit 6.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
5	1T	68	Total	С	Ν	0	\mathbf{S}	0	0
0	11	00	550	347	92	105	6	0	0
5	1 I	68	Total	С	Ν	0	S	0	0
0	10	00	550	347	92	105	6	0	0
5	бI	68	Total	С	Ν	0	S	0	0
0	01	00	550	347	92	105	6	0	0
5	61	68	Total	С	Ν	0	S	0	0
5	00	00	550	347	92	105	6	0	0

• Molecule 6 is a protein called Mitochondrial ubiquinol-cytochrome c oxidoreductase subunit 8.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	1K	70	Total	С	Ν	0	S	0	0
0	111	10	594	386	104	103	1	0	0
6	11	70	Total	С	Ν	0	S	0	0
0	112	10	594	386	104	103	1	0	0
6	6K	70	Total	С	Ν	0	S	0	0
0	011	10	594	386	104	103	1	0	0
6	61	70	Total	С	Ν	Ο	S	0	0
0	UL	10	594	386	104	103	1	0	0

• Molecule 7 is a protein called MPP-Beta.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	1M	464	Total	С	Ν	0	\mathbf{S}	0	0
1	1 1/1	404	3646	2290	641	696	19	0	0
7	1 N	464	Total	С	Ν	0	S	0	0
	110	404	3646	2290	641	696	19	0	0
7	бМ	464	Total	С	Ν	0	S	0	0
'	UNI	404	3646	2290	641	696	19	0	

Continued from previous page...

Mol	Chain	Residues		At	AltConf	Trace			
7	6N	464	Total 3646	C 2290	N 641	O 696	S 19	0	0

• Molecule 8 is a protein called Mitochondrial ubiquinol-cytochrome c oxidoreductase subunit 10.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
8	10	18	Total	С	Ν	Ο	S	0	0
0	10	40	371	249	61	60	1	0	0
8	1D	18	Total	С	Ν	Ο	S	0	0
0	11	40	371	249	61	60	1	0	0
0	60	18	Total	С	Ν	Ο	\mathbf{S}	0	0
0	00	40	371	249	61	60	1	0	0
8	бР	18	Total	С	Ν	Ο	S	0	0
0	01	40	371	249	61	60	1	0	0

• Molecule 9 is a protein called Alpha-MPP.

Mol	Chain	Residues		At	oms			AltConf	Trace
0	10	4.4.1	Total	С	Ν	0	S	0	0
9	IQ	441	3204	2018	562	619	5	0	0
0	19	4.4.1	Total	С	Ν	0	S	0	0
9	15	441	3204	2018	562	619	5	0	0
0	60	4.4.1	Total	С	Ν	0	S	0	0
9	0Q	441	3204	2018	562	619	5	0	0
0	68	4.4.1	Total	С	Ν	0	S	0	0
9	au	441	3204	2018	562	619	5		U

• Molecule 10 is a protein called Cytochrome b-c1 complex subunit 7.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	1D	199	Total	С	Ν	0	S	0	0
10	110	122	980	617	178	183	2	0	0
10	11	199	Total	С	Ν	0	S	0	0
10	11	122	980	617	178	183	2	0	0
10	6D	199	Total	С	Ν	0	S	0	0
10	010	122	980	617	178	183	2	0	0
10	бT	199	Total	С	Ν	0	S	0	0
10	01	122	980	617	178	183	2	0	0

• Molecule 11 is a protein called Cytochrome c oxidase subunit 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	24	504	Total	С	Ν	0	S	0	0
	ZA	504	3888	2600	618	643	27	0	0
11	37	504	Total	С	Ν	0	S	0	0
11	JA	504	3888	2600	618	643	27	0	0
11	4.4	504	Total	С	Ν	0	S	0	0
11	4Λ	504	3888	2600	618	643	27	0	0
11	7Λ	504	Total	С	Ν	0	S	0	0
11	17	504	3888	2600	618	643	27	0	0
11	81	504	Total	С	Ν	0	S	0	0
11	OA	504	3888	2600	618	643	27	0	0
11	0.4	504	Total	С	Ν	0	S	0	0
	JΛ	504	3888	2600	618	643	27	0	U

• Molecule 12 is a protein called Cytochrome c oxidase polypeptide II.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	υB	1.4.1	Total	С	Ν	0	S	0	0
12	2D	141	1169	774	188	201	6	0	0
19	зВ	1.41	Total	С	Ν	0	S	0	0
12	50	141	1169	774	188	201	6	0	0
19	4B	1.4.1	Total	С	Ν	0	S	0	0
12	4D	141	1169	774	188	201	6	0	0
19	$7\mathrm{B}$	1.4.1	Total	С	Ν	0	S	0	0
12	1D	141	1169	774	188	201	6	0	0
19	۶Ð	1.4.1	Total	С	Ν	0	S	0	0
	oD	141	1169	774	188	201	6	0	0
19	0P	1.4.1	Total	С	Ν	0	S	0	0
12	эD	141	1169	774	188	201	6		

• Molecule 13 is a protein called cytochrome-c oxidase.

Mol	Chain	Residues		At	oms		AltConf	Trace	
12	20	153	Total	С	Ν	0	S	0	0
10	20	100	1212	776	206	223	7	0	0
12	30	153	Total	С	Ν	0	S	0	0
10	30	100	1212	776	206	223	7	0	0
12	40	153	Total	С	Ν	0	S	0	0
10	40	100	1212	776	206	223	7	0	0
12	7C	153	Total	С	Ν	Ο	S	0	0
10	10	100	1212	776	206	223	7	0	0
12	80	153	Total	С	Ν	Ο	\mathbf{S}	0	0
10	00	100	1212	776	206	223	7	0	0
12	00	153	Total	С	Ν	0	S	0	0
10	90	100	1212	776	206	223	7	0	

Mol	Chain	Residues		At	oms			AltConf	Trace
14	20	266	Total	С	Ν	0	S	0	0
14	2D	200	2079	1373	334	351	21	0	0
14	зD	266	Total	С	Ν	0	S	0	0
14	3D	200	2079	1373	334	351	21	0	0
14	4D	266	Total	С	Ν	0	S	0	0
14	4D	200	2079	1373	334	351	21	0	0
14	7D	266	Total	С	Ν	0	S	0	0
14	11	200	2079	1373	334	351	21	0	0
14	80	266	Total	С	Ν	0	S	0	0
14	0D	200	2079	1373	334	351	21	0	0
14	П	266	Total	С	Ν	0	S	0	0
14	9D	200	2079	1373	334	351	21	0	U

• Molecule 14 is a protein called Cytochrome c oxidase subunit 3.

• Molecule 15 is a protein called Cox5b.

Mol	Chain	Residues		At	oms		AltConf	Trace	
15	2E	90	Total	С	Ν	Ο	S	0	0
10	212	50	737	478	114	144	1	0	0
15	2F	90	Total	С	Ν	Ο	\mathbf{S}	0	0
10	512	30	737	478	114	144	1	0	0
15	4E	90	Total	С	Ν	Ο	\mathbf{S}	0	0
10	417	30	737	478	114	144	1	0	0
15	$7\mathrm{E}$	90	Total	С	Ν	Ο	\mathbf{S}	0	0
10	112	30	737	478	114	144	1	0	0
15	8F	00	Total	С	Ν	Ο	\mathbf{S}	0	0
10	OL	90	737	478	114	144	1	0	0
15	0F	90	Total	С	N	0	S	0	0
10	512	50	737	478	114	144	1	0	

• Molecule 16 is a protein called Cox5c.

Mol	Chain	Residues		At	oms		AltConf	Trace	
16	9F	86	Total	С	Ν	0	S	0	0
10	21	80	706	456	122	126	2	0	0
16	3E	86	Total	С	Ν	Ο	S	0	0
10	51	80	706	456	122	126	2	0	0
16	4F	86	Total	С	Ν	Ο	S	0	0
10	41	80	706	456	122	126	2	0	0
16	7Γ	86	Total	С	Ν	0	S	0	0
10	11	80	706	456	122	126	2	0	0
16	9 F	86	Total	С	Ν	0	S	0	0
10	ог	80	706	456	122	126	2	U	0

Continued from previous page...

Mol	Chain	Residues		At	AltConf	Trace			
16	$9\mathrm{F}$	86	Total 706	C 456	N 122	0 126	${ m S} { m 2}$	0	0

• Molecule 17 is a protein called Cox6a.

Mol	Chain	Residues		At	oms		AltConf	Trace	
17	20	01	Total	С	Ν	0	S	0	0
11	20	51	733	484	120	124	5	0	0
17	30	01	Total	С	Ν	Ο	\mathbf{S}	0	0
11	30	51	733	484	120	124	5	0	0
17	40	01	Total	С	Ν	0	S	0	0
11	40	91	733	484	120	124	5	0	0
17	7C	01	Total	С	Ν	0	S	0	0
11	10	91	733	484	120	124	5	0	0
17	°C	01	Total	С	Ν	0	S	0	0
11	00	91	733	484	120	124	5	0	0
17	00	01	Total	С	Ν	0	S	0	0
11	96	91	733	484	120	124	5		0

• Molecule 18 is a protein called Cox6b.

Mol	Chain	Residues		At	oms		AltConf	Trace	
18	<u>эн</u>	114	Total	С	Ν	0	S	0	0
10	211	114	954	606	159	185	4	0	0
18	<u>२</u> म	114	Total	С	Ν	0	S	0	0
10	- 511	114	954	606	159	185	4	0	0
18	<i>1</i> Н	114	Total	С	Ν	0	S	0	0
10	411	114	954	606	159	185	4	0	0
10	711	114	Total	С	Ν	0	S	0	0
10	(11	114	954	606	159	185	4	0	0
10	٥Ц	114	Total	С	Ν	0	S	0	0
10	011	114	954	606	159	185	4	0	0
18	он	114	Total	С	Ν	0	S	0	0
10	911	114	954	606	159	185	4		

• Molecule 19 is a protein called Cox7c.

Mol	Chain	Residues		Ator	ns		AltConf	Trace
10	21	72	Total	С	Ν	Ο	0	0
19	21	12	594	393	98	103	0	0
10	्य	72	Total	С	Ν	Ο	0	0
19	51	12	594	393	98	103	U	

Mol	Chain	Residues		Ator	\mathbf{ns}		AltConf	Trace
10	4I	79	Total	С	Ν	Ο	0	0
19	41	12	594	393	98	103	0	0
10	71	79	Total	С	Ν	Ο	0	0
19	11	12	594	393	98	103	0	0
10	्र	79	Total	С	Ν	0	0	0
19	01	12	594	393	98	103	0	0
10	0I	79	Total	С	Ν	0	0	0
19	91	12	594	393	98	103	0	0

Continued from previous page...

• Molecule 20 is a protein called Cytochrome c oxidase subunit.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	9 I	104	Total	С	Ν	Ο	S	0	0
20	20	104	816	522	144	147	3	0	0
20	3 I	104	Total	С	Ν	Ο	\mathbf{S}	0	0
20	00	104	816	522	144	147	3	0	0
20	4 I	101	Total	С	Ν	0	\mathbf{S}	0	0
20	40	101	790	506	140	141	3	0	0
20	71	104	Total	С	Ν	0	\mathbf{S}	0	0
20	10	104	816	522	144	147	3	0	0
20	81	104	Total	С	Ν	0	\mathbf{S}	0	0
20	00	104	816	522	144	147	3	0	0
20	01	101	Total	С	N	0	S	0	0
20	90	101	790	506	140	141	3	0	0

• Molecule 21 is a protein called Cox7a.

Mol	Chain	Residues		Aton	ns		AltConf	Trace
21	2K	47	Total	C	N	0	0	0
			382	249	63	70		
21	3K	47	Total	С	Ν	0	0	0
			382	249	63	70		
21	4K	47	Total	С	Ν	Ο	0	0
		11	382	249	63	70	0	0
21	7K	47	Total	\mathbf{C}	Ν	Ο	0	0
21	111	11	382	249	63	70	0	0
21	8K	47	Total	С	Ν	0	0	0
21	01	41	382	249	63	70	0	0
91	0K	47	Total	С	Ν	0	0	0
	91	41	382	249	63	70		U

• Molecule 22 is a protein called CoxIn.

Mol	Chain	Residues		At	oms		AltConf	Trace	
22	21	76	Total	С	Ν	0	S	0	0
	2L	70	605	390	100	111	4	0	0
22	श	78	Total	С	Ν	0	S	0	0
	51	10	627	405	104	114	4	0	0
22	4L	78	Total	С	Ν	Ο	\mathbf{S}	0	0
	417	10	627	405	104	114	4	0	0
22	71	76	Total	С	Ν	Ο	\mathbf{S}	0	0
	11	10	605	390	100	111	4	0	0
22	81	78	Total	С	Ν	Ο	\mathbf{S}	0	0
	OL	10	627	405	104	114	4	0	0
22	0I.	78	Total	С	Ν	0	S	0	0
	31	10	627	405	104	114	4		

• Molecule 23 is a protein called NADH:ubiquinone oxidoreductase 24 kD subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
23	5A	239	Total 1839	C 1165	N 311	O 352	S 11	0	0
23	А	239	Total 1839	C 1165	N 311	O 352	S 11	0	0

• Molecule 24 is a protein called NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
24	$5\mathrm{B}$	435	Total 3331	C 2099	N 592	0 614	S 26	0	0
24	В	435	Total 3331	C 2099	N 592	O 614	S 26	0	0

• Molecule 25 is a protein called NADH:ubiquinone oxidoreductase 78 kDa subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
25	$5\mathrm{C}$	688	Total 5175	C 3235	N 936	0 972	S 32	0	0
25	С	688	Total 5175	C 3235	N 936	O 972	S 32	0	0

• Molecule 26 is a protein called NADH:ubiquinone oxidoreductase 30kDa subunit domaincontaining protein.

Mol	Chain	Residues		Ate	oms		AltConf	Trace	
26	5D	216	Total	С	Ν	0	S	0	0
_0	02	-10	1790	1156	301	325	8	Ŭ	Ŭ
26	Л	216	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
20		210	1790	1156	301	325	8		U

• Molecule 27 is a protein called NADH:ubiquinone oxidoreductase 49 kD subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
27	55	386	Total	С	Ν	0	\mathbf{S}	0	0
21	JE	360	3107	1986	540	558	23	0	0
97	F	286	Total	С	Ν	0	S	0	0
21		300	3107	1986	540	558	23	0	0

• Molecule 28 is a protein called NADH:ubiquinone oxidoreductase subunit 10.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
28	$5\mathrm{F}$	157	Total 1225	C 787	N 211	0 215	S 12	0	0
28	F	157	Total 1225	C 787	N 211	O 215	S 12	0	0

• Molecule 29 is a protein called NADH:ubiquinone oxidoreductase subunit 8.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	5G	100	Total	С	Ν	Ο	\mathbf{S}	0	0
25	50	155	1615	1007	281	315	12	0	0
20	С	100	Total	С	Ν	0	\mathbf{S}	0	0
29	G	199	1615	1007	281	315	12	0	0

• Molecule 30 is a protein called B14.5a.

Mol	Chain	Residues		At	oms		AltConf	Trace	
30	5H	00	Total	С	Ν	Ο	\mathbf{S}	0	0
50	511	90	750	486	129	132	3	0	0
30	Ц	00	Total	С	Ν	0	\mathbf{S}	0	0
- 50	11	90	750	486	129	132	3		

• Molecule 31 is a protein called Mitochondrial NADH:ubiquinone oxidoreductase 18 kDa subunit.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	5I	135	Total 1044	C 661	N 173	O 208	${ m S} { m 2}$	0	0

Continued from previous page...

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
31	Ι	135	Total 1044	C 661	N 173	O 208	S 2	0	0

• Molecule 32 is a protein called Acyl carrier protein.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	51	84	Total	С	Ν	Ο	S	0	0
32	- 00	04	640	404	100	133	3	0	0
20	5r	88	Total	С	Ν	0	S	0	0
32	51	00	663	419	104	137	3	0	0
20	т	84	Total	С	Ν	0	S	0	0
32	J	04	640	404	100	133	3	0	0
20	r	88	Total	С	Ν	0	S	0	0
32	1	00	663	419	104	137	3	0	0

• Molecule 33 is a protein called NADH:ubiquinone oxidoreductase B14 subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
33	$5\mathrm{K}$	119	Total 986	C 640	N 173	0 168	${ m S}{ m 5}$	0	0
33	K	119	Total 986	C 640	N 173	0 168	${f S}{5}$	0	0

• Molecule 34 is a protein called NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial.

Mol	Chain	Residues		At	oms		AltConf	Trace	
34	51	164	Total	С	Ν	0	\mathbf{S}	0	0
54	511	104	1275	803	221	245	6	0	0
34	т	164	Total	С	Ν	0	S	0	0
04		104	1275	803	221	245	6	0	0

• Molecule 35 is a protein called NADH:ubiquinone oxidoreductase 13 kD-like subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
35	5M	191	Total	С	Ν	0	S	0	0
- 55	5101	121	913	582	150	178	3	0	0
35	М	191	Total	С	Ν	0	\mathbf{S}	0	0
00	111	121	913	582	150	178	3		

• Molecule 36 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12.

Mol	Chain	Residues		At	oms		AltConf	Trace	
36	5N	150	Total	С	Ν	0	S	0	0
- 50	510	100	1235	791	214	227	3	0	0
36	N	150	Total	С	Ν	0	\mathbf{S}	0	0
- 50	1 N	150	1235	791	214	227	3	0	0

• Molecule 37 is a protein called NADH:ubiquinone oxidoreductase B8 subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
37	50	100	Total	С	Ν	Ο	\mathbf{S}	0	0
51	50	100	761	471	138	147	5	0	0
27	0	100	Total	С	Ν	0	\mathbf{S}	0	0
51	0	100	761	471	138	147	5		

• Molecule 38 is a protein called Putative NADH:ubiquinone oxidoreductase 39 kDa subunit.

Mol	Chain	Residues		At		AltConf	Trace		
38	$5\mathrm{P}$	363	Total 2823	C 1793	N 489	O 527	S 14	0	0
38	Р	363	Total 2823	C 1793	N 489	O 527	S 14	0	0

• Molecule 39 is a protein called NADH-ubiquinone oxidoreductase chain 1.

Mol	Chain	Residues		Atoms					Trace
39	50	286	Total	С	Ν	0	\mathbf{S}	0	0
	<u> </u>	200	2179	1448	338	374	19	Ŭ	Ŭ
20	0	206	Total	С	Ν	0	S	0	0
- 39	Q	200	2179	1448	338	374	19	U	U

• Molecule 40 is a protein called NADH-ubiquinone oxidoreductase chain 2.

Mol	Chain	Residues		At		AltConf	Trace		
40	5B	387	Total	С	Ν	0	\mathbf{S}	0	0
40	510	301	3014	2026	467	496	25	0	0
40	В	387	Total	С	Ν	Ο	\mathbf{S}	0	0
40	11	301	3014	2026	467	496	25	0	U

• Molecule 41 is a protein called NADH-ubiquinone oxidoreductase chain 3.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	5S	134	Total 1071	C 715	N 159	0 192	${ m S}{ m 5}$	0	0

Continued from previous page...

Mol	Chain	Residues		At	oms			AltConf	Trace
41	S	134	Total 1071	C 715	N 159	O 192	${ m S}{ m 5}$	0	0

• Molecule 42 is a protein called NADH-ubiquinone oxidoreductase chain 4.

Mol	Chain	Residues		At	oms		AltConf	Trace	
42	5T	443	Total	С	Ν	Ο	\mathbf{S}	0	0
74	01	011	3434	2321	526	557	30	0	0
49	Т	442	Total	С	Ν	Ο	\mathbf{S}	0	0
42	1	440	3434	2321	526	557	30	0	0

• Molecule 43 is a protein called NADH dehydrogenase subunit 4L.

Mol	Chain	Residues		A	toms		AltConf	Trace	
12	511	105	Total	С	Ν	0	S	0	0
43 30	50	105	805	524	124	146	11	0	0
12	T	105	Total	С	Ν	0	S	0	0
40	U	105	805	524	124	146	11	0	0

• Molecule 44 is a protein called NADH-ubiquinone oxidoreductase chain 5.

Mol	Chain	Residues		At	oms		AltConf	Trace	
44	5V	546	Total	С	Ν	0	\mathbf{S}	0	0
44 JV	51	540	4152	2731	668	716	37	0	0
4.4	V	546	Total	С	Ν	0	S	0	0
44	v	540	4152	2731	668	716	37	0	0

• Molecule 45 is a protein called NADH-ubiquinone oxidoreductase chain 6.

Mol	Chain	Residues		At	oms		AltConf	Trace	
45	5W	157	Total	С	Ν	0	S	0	0
40	5.00	107	1210	820	180	201	9	0	0
45	W	157	Total	С	Ν	0	S	0	0
40	vv	107	1210	820	180	201	9	0	0

• Molecule 46 is a protein called ASHI.

Mol	Chain	Residues		At	oms		AltConf	Trace	
46	5 V	125	Total	С	Ν	0	S	0	0
40 5	JA	120	1037	685	168	178	6	0	
46	v	195	Total	С	Ν	0	S	0	0
40	Λ	120	1037	685	168	178	6	0	

• Molecule 47 is a protein called P9.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
47	5V	54	Total	С	Ν	Ο	\mathbf{S}	0	0
41	51	54	405	256	74	74	1	0	0
47	v	54	Total	С	Ν	0	S	0	0
41	I	- 54	405	256	74	74	1	0	0

• Molecule 48 is a protein called KFYI.

Mol	Chain	Residues		At	oms		AltConf	Trace	
18	57	107	Total	С	Ν	0	S	0	0
40	52	107	861	555	149	152	5	0	0
18	7	107	Total	С	Ν	0	\mathbf{S}	0	0
40		107	861	555	149	152	5		

• Molecule 49 is a protein called AGGG.

Mol	Chain	Residues		At	oms		AltConf	Trace	
49	5a	82	Total 674	C 440	N 109	0 123	${S \over 2}$	0	0
49	a	82	Total 674	$\begin{array}{c} \mathrm{C} \\ 440 \end{array}$	N 109	0 123	${S \over 2}$	0	0

• Molecule 50 is a protein called ESSS.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	5h	144	Total	С	Ν	0	S	0	0
50	50	144	1169	756	192	214	7	0	0
50	h	144	Total	С	Ν	0	S	0	0
50	U	144	1169	756	192	214	7	0	0

• Molecule 51 is a protein called B9.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
51	50	50	Total	С	Ν	Ο	S	0	0
51	50		453	298	71	79	5	0	0
51	0	50	Total	С	Ν	0	S	0	0
51	C		453	298	71	79	5	0	0

• Molecule 52 is a protein called Mitochondrial NADH:
ubiquinone oxidoreductase 10 kDa subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
50	54	85	Total	С	Ν	0	S	0	0
52	Ju	00	699	456	120	120	3	0	0
50	d	85	Total	С	Ν	0	S	0	0
52	u	00	699	456	120	120	3	0	0

• Molecule 53 is a protein called Mitochondrial NADH:ubiquinone oxidoreductase 23 kDa subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
52	50	218	Total	С	Ν	0	S	0	0
-05	эе	218	1639	1055	279	297	8	0	0
52	0	218	Total	С	Ν	0	S	0	0
55	е	210	1639	1055	279	297	8	0	0

• Molecule 54 is a protein called Mitochondrial NADH:
ubiquinone oxidoreductase 7.5 kDa subunit.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
54	5f	64	Total	С	Ν	Ο	\mathbf{S}	0	0
04	51	04	532	345	93	92	2	0	0
54	f	64	Total	С	Ν	0	\mathbf{S}	0	0
-04	1	04	532	345	93	92	2	0	0

• Molecule 55 is a protein called Mitochondrial putative NADH:ubiquinone oxidoreductase 6.5 kDa subunit.

Mol	Chain	Residues		Atc	\mathbf{ms}		AltConf	Trace	
55	50	50	Total	С	Ν	Ο	S	0	0
00	Jg	50	416	277	73	65	1	0	0
55	ď	50	Total	С	Ν	0	S	0	0
00	g	50	416	277	73	65	1		0

• Molecule 56 is a protein called Mitochondrial NADH:ubiquinone oxidoreductase 13 kDa subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
56	5h	108	Total	С	Ν	0	\mathbf{S}	0	0
50	511	108	915	597	157	159	2	0	0
56	h	108	Total	С	Ν	0	S	0	0
50	11	108	915	597	157	159	2	0	0

• Molecule 57 is a protein called NADH:ubiquinone oxidoreductase 15 kDa subunit-like.

Mol	Chain	Residues		At	oms		AltConf	Trace	
57	51	76	Total	С	Ν	0	S	0	0
57	51	10	633	387	122	116	8	0	
57	i	76	Total	С	Ν	0	S	0	0
57	1	10	633	387	122	116	8	0	0

• Molecule 58 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7.

Mol	Chain	Residues		At	oms		AltConf	Trace	
59	5;	85	Total	С	Ν	0	S	0	0
- 58	ЭJ	00	712	449	131	125	7	0	0
59	;	85	Total	С	Ν	0	S	0	0
30	J	00	712	449	131	125	7	0	0

• Molecule 59 is a protein called NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9.

Mol	Chain	Residues		At	oms		AltConf	Trace	
59	5k	117	Total 984	C 631	N 176	0 173	${S \atop 4}$	0	0
59	k	117	Total 984	C 631	N 176	0 173	${S \atop 4}$	0	0

• Molecule 60 is a protein called NADH:ubiquinone oxidoreductase 20,9 kD-like subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
60	51	116	Total	С	Ν	Ο	\mathbf{S}	0	0
60	51	110	904	589	150	161	4	0	
60	1	116	Total	С	Ν	0	S	0	0
00	1	110	904	589	150	161	4	0	0

• Molecule 61 is a protein called NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
61	5m	138	Total	С	Ν	Ο	\mathbf{S}	0	0
01		150	1126	724	205	193	4	0	0
61	m	128	Total	С	Ν	Ο	\mathbf{S}	0	0
01	111	130	1126	724	205	193	4	0	0

• Molecule 62 is a protein called Putative NADH:ubiquinone oxidoreductase 12.5 kDa subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
69	5 12	104	Total	С	Ν	0	\mathbf{S}	0	0
02 5n	511	104	864	547	152	159	6	0	0
69	n	104	Total	С	Ν	0	S	0	0
02	11	104	864	547	152	159	6		

• Molecule 63 is a protein called Putative NADH:ubiquinone oxidoreductase 17.8 kDa subunit.

Mol	Chain	Residues		At	oms		AltConf	Trace	
63	50	159	Total	С	Ν	0	S	0	0
03 00	152	1240	771	238	228	3	0	0	
62	0	159	Total	С	Ν	0	S	0	0
0.5	0	152	1240	771	238	228	3	0	0

• Molecule 64 is a protein called Mitochondrial NADH:ubiquinone oxidoreductase 16 kDa subunit.

Mol	Chain	Residues		At	oms			AltConf	Trace
64	50	120	Total	С	Ν	Ο	S	0	0
04 op	129	1069	670	192	204	3	0	0	
64	n	120	Total	С	Ν	0	S	0	0
04	р	129	1069	670	192	204	3	0	0

• Molecule 65 is a protein called Mitochondrial NADH:ubiquinone oxidoreductase 19 kDa subunit.

Mol	Chain	Residues		At	oms			AltConf	Trace
65	50	157	Total	С	Ν	0	S	0	0
05	pe	197	1268	818	217	229	4	0	0
65	a	157	Total	С	Ν	0	S	0	0
00	q	107	1268	818	217	229	4	0	0

• Molecule 66 is a protein called Mitochondrial NADH:
ubiquinone oxidoreductase 32 kDa subunit.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
66	Ба	219	Total	С	Ν	Ο	S	0	0
00 OS	52	312	2302	1451	407	435	9	0	0
66	g	219	Total	С	Ν	0	S	0	0
00	5	512	2302	1451	407	435	9	0	0

• Molecule 67 is a protein called CAG2 - CA-like.

Mol	Chain	Residues		Ate		AltConf	Trace		
67	5+	253	Total	С	Ν	0	\mathbf{S}	0	0
07	56	200	1997	1268	357	367	5	0	0
67	+	252	Total	С	Ν	0	S	0	0
07	U	200	1997	1268	357	367	5		0

• Molecule 68 is a protein called CAG1.

Mol	Chain	Residues		At	oms		AltConf	Trace	
68	511	228	Total	С	Ν	0	S	0	0
08 0	Ju	228	1698	1063	300	327	8	0	0
69	11	228	Total	С	Ν	0	\mathbf{S}	0	0
08	u	220	1698	1063	300	327	8	0	0

• Molecule 69 is a protein called P10.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
69	5v	45	Total 361	C 233	N 61	O 66	S 1	0	0
69	V	45	Total 361	C 233	N 61	O 66	S 1	0	0

• Molecule 70 is a protein called Mitochondrial NADH:ubiquinone oxidoreductase 9 kDa subunit.

Mol	Chain	Residues	Atoms					AltConf	Trace
70	5w	64	Total 508	C 334	N 78	O 01	S 5	0	0
			000	004	10	91	<u> </u>		
70	337	64	Total	С	Ν	O	S	0	0
10	vv	04	508	334	78	91	5	0	0

• Molecule 71 is a protein called NUOP8.

Mol	Chain	Residues		At	oms			AltConf	Trace
71	5x	83	Total	С	Ν	0	S	0	0
			699	467	110	121	1	Ŭ	
71	37	02	Total	С	Ν	Ο	\mathbf{S}	0	0
(1	Х	00	699	467	110	121	1	0	0

• Molecule 72 is a protein called NUOP7.

Mol	Chain	Residues	Atoms					AltConf	Trace
72	5у	114	Total 932	C 615	N 154	0 161	${S \over 2}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms					AltConf	Trace
72	У	114	Total 932	C 615	N 154	0 161	${ m S} { m 2}$	0	0

• Molecule 73 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: $C_{34}H_{32}FeN_4O_4$).

Mol	Chain	Residues		Ate	oms			AltConf
73	1 \	1	Total	С	Fe	Ν	0	0
15	17	1	43	34	1	4	4	0
73	1 Δ	1	Total	С	Fe	Ν	Ο	0
15	17	1	43	34	1	4	4	0
73	1R	1	Total	С	Fe	Ν	Ο	0
15	ID	I	43	34	1	4	4	0
73	1R	1	Total	С	Fe	Ν	Ο	0
10	ID	1	43	34	1	4	4	0
73	64	1	Total	С	Fe	Ν	Ο	0
10	011	I	43	34	1	4	4	0
73	64	1	Total	\mathbf{C}	Fe	Ν	Ο	0
10	011	I	43	34	1	4	4	0
73	6B	1	Total	\mathbf{C}	Fe	Ν	Ο	0
10	UD	1	43	34	1	4	4	0
73	6B	1	Total	\mathbf{C}	Fe	Ν	0	0
10	UD	1	43	34	1	4	4	0

• Molecule 74 is HEME C (three-letter code: HEC) (formula: $C_{34}H_{34}FeN_4O_4$).

Mol	Chain	Residues	Atoms					AltConf
74	1 F	1	Total	С	Fe	Ν	Ο	0
14	112	1	43	34	1	4	4	0
74	1 🖸	1	Total	С	Fe	Ν	Ο	0
14	11	1	43	34	1	4	4	0
74	бF	1	Total	С	Fe	Ν	Ο	0
14	0E	1	43	34	1	4	4	0
74	бF	1	Total	С	Fe	Ν	Ο	0
14	01 ^r	1	43	34	1	4	4	0

 $\bullet\,$ Molecule 75 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
75	1M	1	Total Zn 1 1	0
75	1N	1	Total Zn 1 1	0
75	5s	1	Total Zn 1 1	0
75	6M	1	Total Zn 1 1	0
75	6N	1	Total Zn 1 1	0
75	s	1	Total Zn 1 1	0

• Molecule 76 is HEME-A (three-letter code: HEA) (formula: $C_{49}H_{56}FeN_4O_6$).

Mol	Chain	Residues		At	oms			AltConf
76	24	1	Total	С	Fe	Ν	0	0
10	ZA	1	60	49	1	4	6	0
76	24	1	Total	С	Fe	Ν	Ο	0
10	ZA	1	60	49	1	4	6	0
76	34	1	Total	С	Fe	Ν	Ο	0
10	JA	T	60	49	1	4	6	0
76	34	1	Total	С	Fe	Ν	Ο	0
10	0/1	I	60	49	1	4	6	0
76	4 4	1	Total	\mathbf{C}	Fe	Ν	Ο	0
10	-111	1	60	49	1	4	6	0
76	4 4	1	Total	\mathbf{C}	Fe	Ν	Ο	0
		1	60	49	1	4	6	0
76	7A	1	Total	С	Fe	Ν	Ο	0
	111	1	60	49	1	4	6	Ŭ
76	7A	1	Total	С	Fe	Ν	Ο	0
		-	60	49	1	4	6	Ŭ
76	8A	1	Total	С	Fe	Ν	0	0
		-	60	49	1	4	6	Ŭ
76	8A	1	Total	С	Fe	Ν	Ο	0
	011	1	60	49	1	4	6	
76	9A	1	Total	С	Fe	Ν	Ο	0
		*	60	49	1	4	6	
76	9A	1	Total	С	Fe	Ν	Ο	0
	011	Ť	60	49	1	4	6	

• Molecule 77 is COPPER (II) ION (three-letter code: CU) (formula: Cu).

Mol	Chain	Residues	Atoms	AltConf
77	2A	1	Total Cu 1 1	0
77	3A	1	Total Cu 1 1	0
77	4A	1	Total Cu 1 1	0
77	7A	1	Total Cu 1 1	0
77	8A	1	Total Cu 1 1	0
77	9A	1	Total Cu 1 1	0

• Molecule 78 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
78	2A	1	Total Mg 1 1	0
78	3A	1	Total Mg 1 1	0
78	4A	1	Total Mg 1 1	0
78	7A	1	Total Mg 1 1	0
78	8A	1	Total Mg 1 1	0
78	9A	1	Total Mg 1 1	0

• Molecule 79 is DINUCLEAR COPPER ION (three-letter code: CUA) (formula: Cu_2).

Mol	Chain	Residues	Atoms	AltConf
79	$2\mathrm{C}$	1	Total Cu 2 2	0
79	3C	1	Total Cu 2 2	0
79	4C	1	Total Cu 2 2	0
79	7C	1	Total Cu 2 2	0
79	8C	1	Total Cu 2 2	0
79	9C	1	Total Cu 2 2	0

- Molecule 80 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula: Fe_2S_2).

Mol	Chain	Residues	Atoms	AltConf
80	54	1	Total Fe S	0
00	JA	1	4 2 2	0
80	50	1	Total Fe S	0
00	30		4 2 2	0
80	Λ	1	Total Fe S	0
00	Л	L	4 2 2	0
80	С	1	Total Fe S	0
			4 2 2	U

 $\bullet \ \ \ Molecule \ 81 \ is \ FLAVIN \ MONONUCLEOTIDE \ (three-letter \ code: \ FMN) \ (formula: \ C_{17}H_{21}N_4O_9P).$

Mol	Chain	Residues	Atoms					AltConf
81	$5\mathrm{B}$	1	Total	С	Ν	Ο	Р	0
			31	17	4	9	1	
81	р	1	Total	С	Ν	0	Р	0
	Б		31	17	4	9	1	0

Mol	Chain	Residues	Atoms	AltConf
82	$5\mathrm{B}$	1	Total Fe S 8 4 4	0
82	$5\mathrm{C}$	1	TotalFeS844	0
82	$5\mathrm{C}$	1	TotalFeS844	0
82	$5\mathrm{F}$	1	TotalFeS844	0
82	$5\mathrm{G}$	1	TotalFeS844	0
82	$5\mathrm{G}$	1	TotalFeS844	0
82	В	1	Total Fe S 8 4 4	0
82	С	1	Total Fe S 8 4 4	0
82	С	1	TotalFeS844	0
82	F	1	Total Fe S 8 4 4	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf	
82	G	1	Total Fe S	0	
			8 4 4	0	
82	G	1	Total Fe S	0	
			8 4 4	0	

• Molecule 83 is S-[2-({N-[(2R)-2-hydroxy-3,3-dimethyl-4-(phosphonooxy)butanoyl]-beta-alan yl}amino)ethyl] dodecanethioate (three-letter code: 8Q1) (formula: $C_{23}H_{45}N_2O_8PS$).

Mol	Chain	Residues	Atoms						AltConf
02	БТ	1	Total	С	Ν	Ο	Р	S	0
00	- 00	I	35	23	2	8	1	1	0
83	5k	1	Total	С	Ν	0	Р	S	0
00	AC	I	35	23	2	8	1	1	0
83	Т	Г 1	Total	С	Ν	0	Р	S	0
00	J	I	35	23	2	8	1	1	0
02	l.	1	Total	С	Ν	0	Р	S	0
00	ĸ	I	35	23	2	8	1	1	0

• Molecule 84 is NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NDP) (formula: C₂₁H₃₀N₇O₁₇P₃).

Mol	Chain	Residues		At	oms			AltConf	
Q1	5D	1	Total	С	Ν	Ο	Р	0	
04	лс	1	48	21	7	17	3	0	
84	D	D	1	Total	С	Ν	Ο	Р	0
	L_		48	21	7	17	3	0	

• Molecule 85 is CROTONYL COENZYME A (three-letter code: COO) (formula: $C_{25}H_{40}N_7O_{17}P_3S$).

Mol	Chain	Residues	Atoms				AltConf		
95	50	1	Total	С	Ν	Ο	Р	S	0
00	08		53	25	7	17	3	1	0
95	G	1	Total	С	Ν	Ο	Р	S	0
80	5		53	25	7	17	3	1	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Cytochrome b

• Molecule 3: Cytochrome c1

Chain 6G:	98% .
MET V2 T60	
• Molecule 4: C	Complex III subunit 9
Chain 6H:	98% .
NET V2 E58 R59 T60	
• Molecule 5: C	bytochrome b-c1 complex subunit 6
Chain 1I:	99% .
MET V2 K36 D37 K69	
• Molecule 5: C	bytochrome b-c1 complex subunit 6
Chain 1J:	99% ·
MET V2 E3 E6 E6 E6 E3 C3 C3 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	
• Molecule 5: C	bytochrome b-c1 complex subunit 6
Chain 6I:	99% .
MET V2 K36 D37 K69	
• Molecule 5: C	bytochrome b-c1 complex subunit 6
Chain 6J:	99%
MET V2 E3 E3 B37 C41	◆ ◆ Kerner Kerner
• Molecule 6: N	fitochondrial ubiquinol-cytochrome c oxidoreductase subunit 8
Chain 1K:	96% .

MET ALA PRO R4 R4

• Molecule 6: Mitochondrial ubiquinol-cytochrome c oxidoreductase subunit 8 Chain 1L: 96% MET ALA PRC • Molecule 6: Mitochondrial ubiquinol-cytochrome c oxidoreductase subunit 8 Chain 6K: 96% MET ALA PRO • Molecule 6: Mitochondrial ubiquinol-cytochrome c oxidoreductase subunit 8 Chain 6L: 96% MET ALA PRO • Molecule 7: MPP-Beta Chain 1M: 94% 6% • Molecule 7: MPP-Beta Chain 1N: 93% • 6% • Molecule 7: MPP-Beta Chain 6M: 6% 94% • Molecule 7: MPP-Beta Chain 6N: 93% • 6%

• Molecule 8:	Mitochondrial ubiquinol-cytochrome c oxidoreductase subunit	10
Chain 10:	81% 19%	
MET P2 VAL VAL GLN GLN CLEU LEU LEU LYS		
• Molecule 8:	Mitochondrial ubiquinol-cytochrome c oxidoreductase subunit	10
Chain 1P:	81% 19%	
MET P2 H47 V41 L48 A49 A1A ALA ALA ALA		
• Molecule 8:	Mitochondrial ubiquinol-cytochrome c oxidoreductase subunit	10
Chain 6O:	81% 19%	
MET P2 VAL GLN GLN GLN LEV LVS		
• Molecule 8:	Mitochondrial ubiquinol-cytochrome c oxidoreductase subunit	10
Chain 6P:	81% 19%	
MET P2 447 448 449 449 A1A ALA ALA ALA ALA		
• Molecule 9:	Alpha-MPP	
Chain 1Q:	90% · 9%	
MET LEU LEU GLY SER SER SER GLN LEU ALA	ARG ALA ALA ARG ARG SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	H278
D478		
• Molecule 9:	Alpha-MPP	
Chain 1S:	90% • 9%	
MET LEU LEU GLY SER SER SER GLN LEU ALA	PRO ALA VAL VAL VAL ALA ALA SER SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	166 S67 T68 P69 A70

R81 R216 L275 ♦ S302 ♦ C393 ♦	D396 A4 15 A4 75 A4 85 A4 85	
• Molecule 9: A	Alpha-MPP	
Chain 6Q:	90% · 9%	
MET LEU GLY SER SER SER TTR SER SER SER SER ALA	ALA VAL VAL VAL VAL VAL VAL VAL VAL VAL	D478
R483 F484 A485		
• Molecule 9: A	Alpha-MPP	
Chain 6S:	90% • 9%	
MET LEU GLY SER SER THR THR SER CLN LEU ALLA PRO	ALA MET ARA ARA ARA ALA ALA ALA ALA ALA ALA ALA	S67 T68 P69 A70 T71
R81 R316 L275 G393 B396	A4 15 A4 15 A4 85 A4 85 A4 85 A4 85 A4 85	
• Molecule 10:	Cytochrome b-c1 complex subunit 7	
Chain 1R:	99% .	
MET T2 D123		
• Molecule 10:	Cytochrome b-c1 complex subunit 7	
Chain 1T:	99% .	
MET 12 12 D123		
• Molecule 10:	Cytochrome b-c1 complex subunit 7	
Chain 6R:	99% .	
MET T2 D123		
• Molecule 10:	Cytochrome b-c1 complex subunit 7	

99%

Chain 6T:

• Molecule 11: Cytochrome c oxidase subunit 1

• Molecule 11: Cytochrome c oxidase subunit 1

E61 V62 D63 E64 E64 E64 R65 V67 P69 P69 P69 T70 T72	L/3 174 R/75 L/75 L/76 L/76 L/76 A80 A80 A80 A80 A80 A80 A81 A88 V83 A88 V83 V89 V89 V89	A91 L92 C93 C93 M96 097 A98 V99 P100 C101 R102 C101 R102 M104	4105 4105 4106 4106 4106 5109 5110 61110 61114 7117 7115 6114 7115 7115 7115 7115 7115 7115 7115 7
8129 F130 M131 V135 E136 A137 A137 A137 F138 F140 F141 R141	L143 L144 E146 Y147 Y148 K150 K150 N151 S153		
• Molecule 13: cytoch	rome-c oxidase		
Chain 7C:	100%		•
M1 S2 E3 S4 S4 G7 G7 C11 E10 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	K13 114 115 115 115 119 119 122 122 122 122 126 126 126 126 126 126	L31 S32 K33 K33 V34 P35 A36 L49 F160 E51 V52 C55 C55	L60 NT1 ← A80 ← V87 V94 ← V94 ← V94 ←
V115 F116 V117 S121 G125 F129 F143	5153		
• Molecule 13: cytoch	rome-c oxidase		
Chain 8C:	100%		
MI 52 53 53 53 54 65 07 07 18 18 10 11 12 11 2 12 12 12 12 12 12 12 12 12 1	A14 D15 P16 B17 B17 B17 A20 E21 L22 K23 K23 K23 K23 K26 K26 K27 K27 K23 K27 K27 K23 K28 K23 K28 K28 K28 K28 K28 K28 K28 K28 K28 K28	V34 P35 A36 L84 S153	
• Molecule 13: cytoch	rome-c oxidase		
Chain 9C:	89% 100%		
M1 S2 E3 S4 S4 C1 C1 C1 E10 C1 E10	K13 015 P16 817 817 817 817 817 821 821 822 823 825 825 825 825 826 826 826 826 826 827 826 827 826 827 826 827 827 826 827 827 826 827 827 828 828 828 828 828 828 828 828	L31 532 V34 P35 A36 A36 A36 P35 P35 P39 P39 P39 P39 P39 P39 P39 P39 P34	F 444 • • • • • • • • • • • • • • • • •
E61 V62 D63 E64 E64 E64 C65 V67 L66 V67 L66 F69 F69 T70 T72	173 174 175 177 179 179 179 179 179 182 183 183 183 183 183 183 183 183 183 183	A91 L92 G93 G93 M96 M96 A98 A98 C101 R102 C101 R102 C103	V100 W107 M108 S109 S109 S109 N111 R112 E113 C114 V115 F116 Y117 Q118 Q118 Q118 Q118 L123
S129 F130 M131 P132 F132 V134 V135 F135 F135 F135 F135 S139 S139	R141 9142 F143 F144 F145 F145 Y147 V148 K149 K150 M151 N151 S153		
• Molecule 14: Cytocl	nrome c oxidase subunit 3		
Chain 2D:	70%	30%	
MET ARG SER GLN LEU LEU LEU LEU THR THR ARG ALA ALA ALA ALA CLY	SER GLV GLV GLV GLV LEU GLV GLV ARG ALA ALA ALA ALA ALA ALA ALA GLV CLU CLU CLU CLU CLU CLU CLU GLV GLV GLV GLV GLV GLV GLV GLV GLV GLV	SER SER ALA ALA PHE CLY CLY CLY ALA ALA ALA ALA ALA CLU CLU CLU CLU	GLY LYS MET ALA
LEU LEU LEU CLY GLN GLN MET LEU NET LEU ALA ALA	ASN ASP ASP ASP ASP LYS CUS CUS ALA ALA ALA ALA ALA ALA ALA ALA	ALA ALA ALA ALA PRO PRO ARG ARG ARG ARG ALY ALA ALA ALA ALA	

• Molecule 18: Cox6b			
Chain 3H:	77%	23%	
MET GLY PHE PHE ASN PHE PHE PHE ASN ASP ALA ALA ALA ALA ALA CLU CLU	GLU HIS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	L4 E5 S6 L7 S6 S6 M9 E1 E11 E13 E13 E13 E13 E13 E13 E13 E13	v24 K26 127
A28 629 131 031 032 133 133 135 8 135 135 135 135 137 135 137 135 147 19	132 K113 V114		
• Molecule 18: Cox6b			
Chain 4H:	75% 77%	23%	
MET DELEU LEU LEU PHE PHE PHE PHE ASN ASP ALA ASP ALA ASP ALA ALA CUU CUU	GLU HITS ALA ALA ALA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	L4 E5 E5 C1 S6 S6 E17 A9 E11 E11 E13 E14 E13 E14 E13 E14 E13 V17 S21 V20 S21	V23
127 A28 429 429 530 531 433 435 435 435 538 537 538 538 537 538 538 537 538 538 537 538 537 538 540 540 540 558 567 567 567 567 567 567 567 567 567 567	P41 E42 E42 144 A46 A46 A46 P47 P47 P47 P50 P50 P50 P53 P53 P53 P53 P53 P53 P53 P53 P53 P53	q57 A58 R59 H60 C61 F62 C61 F62 F62 F65 F65 F65 F65 F65 F65 F71 F65 F71 F65 F71 F65 F71 F73	676 E 17 E 17 E 17 E 18 P 80 P 80 C 82 C
K87 A88 488 499 490 1.92 591 1.92 595 595 595 694 497 498 895 499 8100	01101 4102 6103 6103 6106 6106 6106 6109 0112 7111 7111 7112 7112		
• Molecule 18: Cox6b			
28% Chain 7H:	77%	23%	
MET GLY GLY CLEU FLEU PHE ASN ASN ASN ALA ALA ALA ALA CLU CLU GLU GLU	GLU HIS ALA ALA PRO PRO PRO PRO PRO PRO LYS SER SER KI T3 P2	L4 E5 86 85 85 88 88 811 E11 E11 E13 E13 E13 E13 E13 E13 V19 V19 V20 V20 V20 V20 V20 V20 V20 V20 V20 V20	V24 D25 K26
127 127 129 129 123 123 123 123 123 123 123 123			
• Molecule 18: Cox6b			
Chain 8H:	77%	23%	
MET DLEU LLEU PLEU PLEU PLEU PLEU PLEU PLE PLE PLE ASN ASN ASN ASN ASN ASN ASN ASN ASN CLU CLU	GLU HIS ALA ALA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	L4 E5 E5 S6 A9 A9 E11 E11 E13 E13 E13 E13 E13 E14 E13 E13 E14 E13 E13 E13 E13 E13 E13 E13 E13 E13 E13	225 8226 127
A28 62.02 1331 1333 1334 1335 1335 1335 1335 1335	1922 1113 1114 1114		
• Molecule 18: Cox6b			
Chain 9H:	76% 77%	23%	

5% 71% 29% • • • • • • • • • • • • • • • • • • •	
Image: Second	
• Molecule 19: Cox7c 52% Chain 9I: 71% 29%	
52% Chain 9I: 71% 29%	
MET ALA ALA ALA ARG CLN ARG CLN ARG CLN ARG CLN ARG CLN ARG CLN ARD CLN ARD CLN ARD CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	H56 G57 P58 H59 Y60 L61
qqs2 Pc3 Fc9 Pc7 A75 C76 C75 C76 A75 C76 C77 C76 A75 C76 C76 C77 C76 C76 C76 C76 C76 C76 C77 C76 C77 C76 C76 C76 C77 C76 C76 C76 C77 C77 C77 C78 A101	
• Molecule 20: Cytochrome c oxidase subunit	
Chain 2J: 99%	
MET A2 A2 A3 A40 F51 F51 F64 F64 F64 F64 F64 F64 F64 F64 F64 F64	
• Molecule 20: Cytochrome c oxidase subunit	
Chain 3J:	
MET A2 P1 04 F1 05 F1 05 F1 05	
• Molecule 20: Cytochrome c oxidase subunit	
47% Chain 4J: 96% ·	
MET A2 R3 F7 F14 736 737 736 737 736 736 736 736 736 736	L85 N86 P87 F88 T89 T89 P93 C94 C94 S95
196 299 E100 A 102 LYS GLU	
• Molecule 20: Cytochrome c oxidase subunit	
Chain 7J: 99%	

• Molecule 22: CoxIn			
Chain 8L:	90%	10%	
MET PRO LLEU L2 L7 P4 S40 S40 S40 KE5 KE5 KE5	RY1 NY2 HZ3 W81 W81 PR0 ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN		
• Molecule 22: CoxIn	470/		
Chain 9L:	90%	10%	
MET PRO LLEU LEU F5 K6 X11 Y12 L14 M15 L14 T19	Y20 A21 S22 A24 A24 F25 V26 F25 C29 C29 C29 C29 C29 C29 C29 C29 C29 C29	D47 E48 E48 C50 A52 A53 A53 A53 A53 A53 A55 A55 A55 A55 A55	F65 F66 D67 A68 R71 R71 H73 K74 K74
V75 -			
• Molecule 23: NADH:u	ıbiquinone oxidoreductase 24 k	D subunit	
Chain 5A:	65% 85%	15%	
MET LEU SER SER ALA ALA LEU LEU LEU ALA ALA ALA ALA CLN GLN	CLUN CLUN ALLA ALLA ALLA SER SER SER ALLA ALLA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	ALA 142 N43 844 145 146 146 147 F48 K52 P55 F55 N55 N55 N55	A 55 A 60 S 62
F63 E64 F65 S66 B67 A68 A68 K71 M74 M78 M78 K79 K79	Y80 K85 887 887 A88 A88 A88 A88 A88 A88 A88 C91 C95 C95 C95 C95 C98 C98 C98 C98 C98 C98 C98 C98 C98 C98	A108 M109 M109 M111 V112 A113 A113 L115 L115 M115 A119 P120 P120 P120 M125 A120	A127 F128 F129 T131 M132 F133 N134 R135 F135
K137 1138 C139 K140 Y141 Y141 1145 U145 P160	6155 4 K1558 4 L1559 4 A162 4 L165 4 H165 4 L167 4 L163 4	T174 T176 0176 0177 0177 1181 1181 1181 1182 0183 6183 6183 6183 6183 6183 6183 6183 6	A190 C191 V192 A194 A194 A196 A196 A196 A198 A198 A198 A198 D200
Y202 T203 K204 C205 V206 S207 C205 F206 F209 F209 F209 F209 F211 Y211 Y211 Y213	D216 1217 1218 P219 P219 N220 D221 1225 1225 1225 1226 1226 1228 1228 1228 1228 1228 1228	2333 (2333 (2334 (2335 (2235) (2235 (2235 (2235) (2235) (2235) (2235) (2235) (2235) (2235) (2235) (2235) (2235))))	V251 H252 G253 C254 E255 K256 W257 V258 P259 K250 K250 K250 C261
E263 1264 1265 1265 1266 1266 268 268 268 268 268 268 268 268 268	AZ 75 D2 77 L2 77 A2 80 A2 80 ALA ALA		
• Molecule 23: NADH:	ıbiquinone oxidoreductase 24 k	D subunit	
Chain A:	65% 85%	15%	
		******	••••
MET LEU SER ARG ALA ALA CEU CEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA ALA ALA ALA ALA SER TFH SER ARG CLN VALA ARG CLN CCS SER LEU LEU LEU LEU LEU LEU CSS ARG	ALA 142 844 145 147 147 147 147 147 147 147 154 155 155 155 155 155 155 155 155 155	A 59 T 61 S 62 S 62

• Molecule 24: NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial

PROTEIN DATA BANK

• Molecule 26: NADH:ubiquinone oxidoreductase 30kDa subunit domain-containing protein

Chain 5D: 77% 23%

• Molecule 26: NADH:ubiquinone oxidoreductase 30kDa subunit domain-containing protein

Chain D:	77%	23%
MET LYS SER SER ALA GLN EEU LEU LYS CLN ALA PRO TLE	LYS CLY CYS CYS CYS CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	SER MET MET MET MET CALU CALU CALU CALU CALU CALU ALA SER ALA SER ALA SER ALA SER CALU CALU CALU CALU CALU CALU CALU CALU
CLN CLN THR ARG SER MET G67 Y65 Y65 Y65 Y65 Y65 Y65 Y65 Y65 Y65 Y65	A1 90 F204 E278 E278 H282 ↔	
• Molecule 27: NAD	H:ubiquinone oxidoreductase	e 49 kD subunit
Chain 5E:	83%	17%
MET ARG ARG GLN ALA ALA CYS CYS CYS CYS CYS CYS CYS CYS ALA ALA	GLY ALA ALA ALA ALA CLN CLN ALA ALA ALA ALA ALA ALA ALA ALA CLN CLN CLN	LLEU GLU GLU GLU ARG GLU ARG CLEU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG
MET PRO TRP SER SER GLN ALA ALA ALA ALA GLU ALA	L76 H1S H1S H1S ALA ALA ALA ALA H1S G17 A113 A113 A113 D114	E1 29 Y1 55 11 74 11 74 R2 25 R2 234 Q2 34 Q2 68 Q2 68 Q3 91
A314 M355 P355 B357 G358 S362 C358 C358 C358 C358 C358 C358 C358 C358	E380 A381 A481 A481 <	
• Molecule 27: NAD	H:ubiquinone oxidoreductase	e 49 kD subunit
Chain E:	83%	17%
MET ARG ARG GLN ALA VAL THR CYS CYS CYS CYS CYS CYS CYS CYS ALA ALA	SER SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	LEU GLN GLN GLN GLN GLV ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG
MET TRP TRP SER LEU LEU ALA ALA ALA ALA ALA ALA	L76 491 HIS HIS ALA ALA ALA ALA ALA GLY V98 GLY V98 AL12 AL112 AL113 AL113 AL113 AL113 AL112 AL112 AL113	E129 ← 1174 ← 1174 ← 1174 ← 1262 ← 2333 ← 2333 ← 2333 ← 2333 ← 2333 ← 2333 ← 2333 ← 2333 ← 2333 ← 2333 ← 2333 ← 23433 ← 2343 ← 23433 ← 2343 ← 2343 ← 2343 ← 2343 ← 2343 ← 2343 ← 2343 ←
R346 M355 P356 P357 G358 C358 C358 C355 C355 C355 C355 C355 C	L382 F386 K387 L388 H394 H394 F399 F399 F418 F418 F418 F418 F418 F415 F418 F455 F459 F459 F459 F459 F459 F459 F455 F455	
• Molecule 28: NAD	H:ubiquinone oxidoreductase	e subunit 10
Chain 5F:	96%	•
MET SER LYS PRO ALA ALA ALA A8 A8 A8 A8 A8 A8 A8 A8 C33 C36 C36	L37 1143	
• Molecule 28: NAD	H:ubiquinone oxidoreductase	e subunit 10
Chain F:	96%	·

96%

• Molecule 29: NADH:ubiquinone oxidoreductase subunit 8

• Molecule 31: Mitochondrial NADH:ubiquinone oxidoreductase 18 kDa subunit

Chain 5I:	82%	18%
MET LEU ARG GLN CEU CEU ALA THR LEU LEU LEU	ALY ALA ARA SER ARG SER ARA ASN VAL VAL VAL ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	T157 T158 T158 D160 A161 P162 P102 L1YS
• Molecule 31	: Mitochondrial NADH:ubiquinone oxidoreductas	e 18 kDa subunit
Chain I:	82%	18%
MET LEU ARG GLN GLN LEU LEU LEU PRO	ALY ALY ALA SER ALA ALA ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN AS	T157
• Molecule 32	: Acyl carrier protein	
Chain 5J:	66%	34%
MET ALA LEU SER SER SER ALA ALA ASN VAL	SARG SARG ALLA ALLA ALLA ALLA ALLA ALLA ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALLA A	
• Molecule 32	: Acyl carrier protein	
Chain 5r:	69%	31%
MET ALA LEU SER SER ALA ALA ALA VAL VAL	SER ALA ALA ALA ALA ALA ALA CLEU ARG CLN ARG CLN ARG CLN ARG CLN ARG CLN ARG CLN ARG CLN ARG CLN ARG CLN ARG CLN ARG CLN ARG CLN ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	
• Molecule 32	: Acyl carrier protein	
Chain J:	66% 34	1%
MET ALA LEU SER SER ALA ALA ALA VAL VAL	SER SER ALA LEU LEU LEU CLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	
• Molecule 32	: Acyl carrier protein	
Chain r:	69%	31%
MET ALA LEU SER SER ALA ALA ASN VAL	ARG ARG ALLA ALLA ALLA ALLA ALLA ALLA AL	
• Molecule 33	: NADH:ubiquinone oxidoreductase B14 subunit	
Chain 5K:	86%	14%
MET SER SER SER ARG ALA ALA ALA ALA ALA	ALU VAL ALA ALA ALA ALA ALA ALA ALA ALA VI12 VI12 VI13 VI13 VI13 VI13 VI13 VI13 VI13 VI13	

WORLDWIDE PROTEIN DATA BANK • Molecule 33: NADH:ubiquinone oxidoreductase B14 subunit

• Molecule 34: NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial

Chain 5L:	88%	12%	
MET GLN ARG SER ILE LEU LEU LEU ARG ARG CLY VAL CLU CLU CLY VAL	E19 F20 A21 A23 A23 A25 A25 A44 A41 A44 A44 A44 A44 A44 A41 A44 A44	D84 A113 ← K138 ← K138 ← K150 ← K151 ← R151 ← R155 ←	G163 D164 N165 F166 G167
T168 84.69 84.70 44.71 41.71 41.72 91.72 11.73 11.75 11.78 1	N182 ARG ALLA ALLA ALLA LLYS LYS		

• Molecule 34: NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial

• Molecule 35: NADH:
ubiquinone oxidoreductase 13 kD-like subunit

 \bullet Molecule 39: NADH-ubiquinone oxidore
ductase chain 1

Chain 5Q: 5%	98%	
M1 M31 Q32 R33 Q47 L126	1.134 ↓ 1.134 ↓ Y138 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 1.176 ↓ 2.055 ↓ 2.1292 ↓ 1.292 ↓	
• Molecule 39:	NADH-ubiquinone oxidoreductase chain 1	
Chain Q:	98% .	
M1 M31 Q32 R33 Q47 A85	L1 26 S1 31 L1 34 L1 35 L1 45 L1 76 L1 92 P1 98 D1 93 P1 98 D1 93 P1 98 D1 93 P1 98 D1 93 P1 98 Q2 05 K2 415 K2 415 ALA AL2 1 AL2 2	
• Molecule 40:	NADH-ubiquinone oxidoreductase chain 2	
Chain 5R:	100%	
X-4 P356 N357		
• Molecule 40:	NADH-ubiquinone oxidoreductase chain 2	
Chain R:	100%	
X-4 P356 N357 1382		
• Molecule 41:	NADH-ubiquinone oxidoreductase chain 3	
Chain 5S:	48% 52%	
MET ALA LEU ARG SER ALA SER GLY LEU LEU	GLY VAL CLY CLEU CLEU CYS LLEU PRO CYS LLEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLU HIS ALA ASN
ALA THR THR CYS CYS ASN LYS LLU GLY CLEU GLY CLEU	ALA CLEU CLEU CLEU CLEU CLEU CLEU CLEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARG THR PRO GLY
PHE LEU LEU PRO PRO GLN GLN SER VAL ARG GLY	Y132 \$181 \$181 \$181 \$181 \$181 \$181 \$181 \$184 \$184 \$184 \$184 \$184 \$184 \$184 \$195 \$219 \$219 \$219 \$219 \$219 \$219 \$219 \$225 \$225 \$225 \$225 \$2276 \$2276 \$2275 \$2276 \$	
• Molecule 41:	NADH-ubiquinone oxidoreductase chain 3	
Chain S:	48% 52%	
MET ALA ALA ARG SER GLY CLU LEU LEU	GLY GLY CYAL CYAL CYAL ARG PRO PRO PRO GLN ASP GLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	GLU HIS ALA ASN
ALA ALA THR CYS CYS CYS ASN LYS LYS LEU GLY GLY PHE	ALA ALA ALA GLN GLN GLN GLN GLN GLN GLN GLN GLN GLN	ARG THR PRO GLY

 \bullet Molecule 42: NADH-ubiquinone oxidore
ductase chain 4

Chain 5T:		100%	
₩1 ₩7443			
• Molecule 4	2: NADH-ubiquinone oxidor	reductase chain 4	
Chain T:		100%	
M1 A443			
• Molecule 4	3: NADH dehydrogenase su	bunit 4L	
Chain 5U:	46%	54%	
MET SER ARG THR GLN LEU LEU LEU ARG	LEU PRO GLY VAL VAL PRO GLY PRO GLY PRO CYS SER CYS SER ALA ASN	CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	LEU GLN ALA ALA SER SER LEU VAL CLN
PHE ALA ASN ILE VAL ASN ARG PRO MET	VAL VAL ALEU ALA ALA ALA ALA ALA MET MET ALA ALA ALA ARG	ARG ALA ALA ALA VAL VAL VAL ARG ARG PRO PRO PRO PRO GLY GLY GLY	PRO THR THR PRO PRO SER ALA LEU ALA
ARG SER Y123 K227			
• Molecule 4	3: NADH dehydrogenase su	bunit 4L	
Chain U:	46%	54%	
MET SER ARG THR GLN LEU LEU LEU ARG	LEU PRO GLY VAL PRO GLY CLY FRO FRO FRO FRO FRO FRO FRO FRO FRO FRO	GLY CLEU CLEU CLEU CLE CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	LEU GLN PRO ALA SER SER SER LEU VAL CLN
PHE ALA ASN TLE VAL ASN ASN PRO MET	V XII PRO THR ALA ALA ALA ALA ALA MET DRO MET MET ALA ALA ALA ALA	ARG ALA ALA CLY CLY CLY VAL ARG ARG PRO PRO PRO PRO CLY GLY GLY GLY	PRO THR THR PRO SER ALA LEU ALA
• Molecule 4	4: NADH-ubiquinone oxido	reductase chain 5	

Chain 5V:

100%

 \bullet Molecule 44: NADH-ubiquinone oxidore
ductase chain 5

• Molecule 48: KFYI		
Chain 5Z:	86%	14%
MET MET GLY GLY GLY HIS HIS ALA ALA ALA ALA E13 E13 CLY CLY CLY	S118 S119 GLY HIS HIS HIS HIS	
• Molecule 48: KFYI		
Chain Z:	86%	14%
MET GLY GLY GLY GLY GLY HIS HIS ALA ALA ALA ALA ALA ALA ALA ALA CLY CLY CLY	S118 S118 GLY HIS HIS HIS	
• Molecule 49: AGGO	r L	
Chain 5a:	63%	• 36%
MET LEU ARG ALA ALA ALA ALA ALA ALA ALA CLY CLY CLY CLY	SER SER VAL ALA ALA GLU GLV GLV ALA ALA ALA ALA ALA ALA ALA GLY GLY GLY GLY	743 ASP ASP ASP ASP ALU ALX ALX ALX ALX ALX ALX ALX ALX ALX
• Molecule 49: AGGO	r L	
Chain a:	62%	36%
MET LEU ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA CLY GLY GLY	SER SER VAL ASN VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA	743 K67 D117 D117 A18 A14 A14 A14 A14 A14 A14 A14 A14 A15 H15 H15 H15
• Molecule 50: ESSS		
Chain 5b:	84%	16%
MET SER SER ALSN LEU LEU LEU LEU ARG ARG ALA ALA ALA ALA ALA ALA	LEU: LEU: ARG GLN ARG ARG GLY GLY GLY CIJ Y29 GLY Y29 GLY	
• Molecule 50: ESSS		
Chain b:	84%	16%
MET SER SER ALS LEU LEU CLEU ARG ALA ALA ALA ALA ALA CLN TTY	LEU ARG GLN ARG GLY ARG GLY GLY GLY CLY CLY CLY A172	
• Molecule 51: B9		
Chain 5c:	88%	12%
M1 SS7 SS7 P41 H1S SER L7S A15 P10 SER A11A A14	LE3 N65 KG7	

W O R L D W I D E PROTEIN DATA BANK

Chain c:	88%	12%
M S37 S37 P41 HIS SER ASP ALA ALA ALA PRO PRO ESO ALA	NG6 NG6	
• Molecule 52: Mitochon	drial NADH:ubiquinone oxid	loreductase 10 kDa subuni
Chain 5d:	99%	<u> </u>
H		
A C A		
• Molecule 52: Mitochon	drial NADH:ubiquinone oxid	loreductase 10 kDa subuni
Chain d:	99%	
MET 22		
• Molecule 53: Mitochon	drial NADH:ubiquinone oxid	loreductase 23 kDa subuni
Chain 5e:	99%	
н <mark></mark>		
MR <mark>72 V</mark>		
• Molecule 53: Mitochon	drial NADH:ubiquinone oxid	loreductase 23 kDa subuni
Chain e:	99%	
MET V2 M147 V219		
• Molecule 54: Mitochon	drial NADH:ubiquinone oxid	loreductase 7.5 kDa subun
Chain 5f:	98%	
• •••		
MET G2 A64 K65 K65		
• Molecule 54: Mitochon	drial NADH:ubiquinone oxid	loreductase 7.5 kDa subun
Chain f:	98%	.
• • •••		
MET 02 109 109 109 109 109 109 109 109 109 109		
	WORLDWID	Е

• Molecule 55:	Mitochondrial putative NADH:ubic	uinone oxidoreductase 6.5 kDa subunit
Chain 5g:	91%	9%
M1 P2 P50 LVS LVS GLU GLU ASP HIS HIS		
• Molecule 55:	Mitochondrial putative NADH:ubic	uinone oxidoreductase 6.5 kDa subunit
Chain g:	91%	9%
M1 P2 P50 C1U ASP ALSP HIS HIS		
• Molecule 56:	Mitochondrial NADH:ubiquinone of	xidoreductase 13 kDa subunit
Chain 5h:	76%	24%
MET ALA GLY GLY SER ALA ASN ASN CLEU GLY LEU	LEU ARG THR LLEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 56:	Mitochondrial NADH:ubiquinone of	xidoreductase 13 kDa subunit
Chain h:	76%	24%
MET ALA GLY GLY ALA ALA ARG ASN CLU GLY CLU	LEU LEU ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 57:	NADH:ubiquinone oxidoreductase	15 kDa subunit-like
Chain 5i:	94%	6%
MET A2 G73 S74 K75 P76 A77 A77 CLY	GLY GLY	
• Molecule 57:	NADH:ubiquinone oxidoreductase 1	5 kDa subunit-like
Chain i:	94%	6%
MET A2 G73 S74 K75 P76 A77 GLY	STH A.12 A.12	
• Molecule 58:	NADH dehydrogenase [ubiquinone]	1 beta subcomplex subunit 7
Chain 5j:	99%	

• Molecule 61: NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13

 \bullet Molecule 65: Mitochondrial NADH:
ubiquinone oxidoreductase 19 kDa subunit

Chain 5q:	80%	20%
MET ALA LEU ARG ALA ALA CLY GLY ARG	CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	

 \bullet Molecule 65: Mitochondrial NADH:
ubiquinone oxidoreductase 19 kDa subunit

 \bullet Molecule 66: Mitochondrial NADH:
ubiquinone oxidoreductase 32 kDa subunit

Chain 5s:	100%
M1 196	

• Molecule 66: Mitochondrial NADH:ubiquinone oxidoreductase 32 kDa subunit

Chain s:	100%	
N1 196 R312		
• Molecule 67: CAG2 - CA	A-like	
Chain 5t:	91%	9%
MET LEU LEU LIYS ARAC ARAC CLY CLN CLN CLN MAL ARAC ARAC ARAC ARAC ARAC ARAC ARAC AR	ALLA ALLA SER PHE ARC C26 V27 V27 F278 H1S	
• Molecule 67: CAG2 - CA	A-like	
Chain t:	91%	9%
MET LEU LEU LEU ARG GLY VAL PRO CLN AALA AALA AALA AALA AALA AALA AALA	ALLA ALLA SER PRE ARG C26 C26 C26 T27 B T27 B T27 B HLS	
• Molecule 68: CAG1		

Chain 5u:	99%	
MET N2 N43 A229		
• Molecule 68: C	SAG1	
Chain u:	99%	
MET <mark>N2 A3 A229</mark>		
• Molecule 69: P	10	
Chain 5v:	100%	
G1 K44 T45 ✦		
• Molecule 69: P	10	
Chain v:	100%	
G1 K44 T45		
• Molecule 70: M	fitochondrial NADH:ubiquinone ox	idoreductase 9 kDa subunit
Chain 5w:	59%	41%
MET ALA SER SER VAL LEU CLEU GLN LEU CLEU CLEU CLEU CLEU	ARG SER SER OLAN ALA ALA ALA ALA ALA ALA ALA ALA ALA	LYS VAL ASP 142 A105 LYS SER SER SER SER SER SER
• Molecule 70: N	fitochondrial NADH:ubiquinone ox	idoreductase 9 kDa subunit
Chain w:	59%	41%
MET ALA SER VAL LEU ARC GLN CLU CLU CLU CLU CLU	ARG SER SER CAL CAL CAL CAL ALA ALA ALA ALA ALA ALA	LYS VAL ASP T42 T42 LYS SER SER SER SER SER
• Molecule 71: N	IUOP8	
Chain 5x:	53%	47%
MET GLN ALA ALA SER LEU LEU LEU LEU LEU CYS	VAL CLY ALA SEER ALA SEER CLU CLU CLU CLU CLU ALA ALA ALA ALA ALA ALA ALA SER THR THR THR THR THR THR THR THR THR TH	CLY SER SER SER SER SER SER PRO PRO PRO PRO PRO CLEU VAL CLEU CLEU SER SER SER SER SER
SER GLY PRO CTS CTS CTS CTS CTS CTS CTS PRO PHE PHE	ASP ASP Y 83	

W O R L D W I D E PROTEIN DATA BANK • Molecule 71: NUOP8

Chain x:	53%		47%	
MET ARG ARG ARG ARG ARG EEU LEU CYS CYS CYS CYS CYS CYS CYS SER A SER A SER A SER A SER A SER SER SER SER SER SER SER SER SER SER	LEU THR SER SER GLN GLN ARG ALA LEU LEU LEU SER SER SER TYR	THR LEU SER SER SER SER	SER SER FLEU PRO PRO ALA ARG PRO GLY CLU	SER SER SER SER
SER GLY PRO CTS CTS CTS CTS CTS CTS CTS ALA ALA ALA ALA ALA ALA ALA ALA ALA ASP VI ASP				
• Molecule 72: NUOP7				
Chain 5y:	97%			·
MET SI A 114 LYS SER HIS				
• Molecule 72: NUOP7				
Chain y:	97%			

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SUBTOMOGRAM AVERAGING	Depositor
Imposed symmetry	POINT, C2	Depositor
Number of subtomograms used	14488	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	143.5	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	3500	Depositor
Magnification	64000	Depositor
Image detector	TFS FALCON 4i (4k x 4k)	Depositor
Maximum map value	0.803	Depositor
Minimum map value	-0.297	Depositor
Average map value	0.005	Depositor
Map value standard deviation	0.032	Depositor
Recommended contour level	0.1	Depositor
Map size (Å)	550.08, 550.08, 550.08	wwPDB
Map dimensions	288, 288, 288	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.9100001, 1.9100001, 1.9100001	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HEC, NDP, MG, CU, ZN, COO, HEA, HEM, CUA, SF4, FES, FMN, 8Q1

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
	Ullaill	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1A	0.34	0/3060	0.52	1/4187~(0.0%)
1	1B	0.35	0/3060	0.53	0/4187
1	6A	0.34	0/3060	0.52	1/4187~(0.0%)
1	6B	0.35	0/3060	0.53	0/4187
2	1C	0.28	0/1643	0.50	0/2233
2	1D	0.28	0/1643	0.50	0/2233
2	6C	0.28	0/1643	0.50	0/2233
2	6D	0.28	0/1643	0.50	0/2233
3	1E	0.34	0/1953	0.53	1/2654~(0.0%)
3	1F	0.33	0/1953	0.52	0/2654
3	6E	0.34	0/1953	0.53	1/2654~(0.0%)
3	6F	0.33	0/1953	0.52	0/2654
4	1G	0.32	0/496	0.55	0/667
4	1H	0.32	0/496	0.50	0/667
4	6G	0.32	0/496	0.54	0/667
4	6H	0.32	0/496	0.50	0/667
5	1I	0.32	0/567	0.50	0/766
5	1J	0.30	0/567	0.45	0/766
5	6I	0.31	0/567	0.50	0/766
5	6J	0.30	0/567	0.45	0/766
6	1K	0.34	0/609	0.54	0/817
6	1L	0.31	0/609	0.54	0/817
6	6K	0.34	0/609	0.53	0/817
6	6L	0.31	0/609	0.55	0/817
7	1M	0.31	0/3723	0.54	0/5046
7	1N	0.31	0/3723	0.54	0/5046
7	6M	0.31	0/3723	0.54	0/5046
7	6N	0.31	0/3723	0.54	0/5046
8	10	0.28	0/385	0.53	0/531
8	1P	0.30	0/385	0.59	$0/\overline{531}$
8	6O	0.28	0/385	0.53	0/531
8	6P	0.30	0/385	0.59	0/531

Mol Chain		Bond lengths		Bond angles	
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
9	1Q	0.33	0/3258	0.56	1/4439~(0.0%)
9	1S	0.30	0/3258	0.53	0/4439
9	6Q	0.33	0/3258	0.55	0/4439
9	6S	0.30	0/3258	0.53	0/4439
10	1R	0.32	0/996	0.57	0/1349
10	1T	0.34	0/996	0.58	0/1349
10	6R	0.32	0/996	0.57	0/1349
10	6T	0.34	0/996	0.58	0/1349
11	2A	0.33	0/4011	0.55	1/5484~(0.0%)
11	3A	0.34	0/4011	0.56	1/5484~(0.0%)
11	4A	0.34	0/4011	0.56	1/5484~(0.0%)
11	7A	0.34	0/4011	0.55	1/5484~(0.0%)
11	8A	0.34	0/4011	0.56	1/5484~(0.0%)
11	9A	0.34	0/4011	0.56	1/5484~(0.0%)
12	2B	0.31	0/1204	0.51	0/1641
12	3B	0.30	0/1204	0.52	0/1641
12	4B	0.30	0/1204	0.52	0/1641
12	7B	0.31	0/1204	0.51	0/1641
12	8B	0.30	0/1204	0.52	0/1641
12	9B	0.30	0/1204	0.52	0/1641
13	2C	0.30	0/1237	0.53	0/1676
13	3C	0.32	0/1237	0.54	0/1676
13	4C	0.32	0/1237	0.55	0/1676
13	7C	0.30	0/1237	0.53	0/1676
13	8C	0.32	0/1237	0.55	0/1676
13	9C	0.32	0/1237	0.54	0/1676
14	2D	0.32	0/2152	0.49	0/2937
14	3D	0.32	0/2152	0.50	0/2937
14	4D	0.32	0/2152	0.50	0/2937
14	7D	0.32	0/2152	0.49	0/2937
14	8D	0.32	0/2152	0.50	0/2937
14	9D	0.32	0/2152	0.51	0/2937
15	2E	0.31	0/757	0.63	0/1029
15	3E	0.32	0/757	0.60	0/1029
15	4E	0.32	0/757	0.60	0/1029
15	7E	0.31	0/757	0.63	0/1029
15	8E	0.32	0/757	0.60	0/1029
15	9E	0.32	0/757	0.60	0/1029
16	2F	0.30	0/726	0.46	0/974
16	3F	0.30	0/726	0.46	0/974
16	4F	0.30	0/726	0.46	0/974
16	7F	0.30	0/726	0.46	0/974
16	8F	0.30	0/726	0.46	0/974

Mol Chain		Bond lengths		Bond angles	
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
16	9F	0.30	0/726	0.46	0/974
17	2G	0.31	0/762	0.58	1/1038~(0.1%)
17	3G	0.30	0/762	0.55	1/1038~(0.1%)
17	4G	0.30	0/762	0.55	1/1038~(0.1%)
17	7G	0.31	0/762	0.58	1/1038~(0.1%)
17	8G	0.30	0/762	0.55	1/1038~(0.1%)
17	9G	0.30	0/762	0.55	1/1038~(0.1%)
18	2H	0.30	0/980	0.51	0/1325
18	3H	0.32	0/980	0.55	0/1325
18	4H	0.32	0/980	0.55	0/1325
18	7H	0.30	0/980	0.51	0/1325
18	8H	0.32	0/980	0.55	0/1325
18	9H	0.33	0/980	0.55	0/1325
19	2I	0.34	0/619	0.51	0/839
19	3I	0.32	0/619	0.50	0/839
19	4I	0.32	0/619	0.50	0/839
19	7I	0.34	0/619	0.51	0/839
19	8I	0.32	0/619	0.50	0/839
19	9I	0.32	0/619	0.50	0/839
20	2J	0.30	0/839	0.51	0/1143
20	3J	0.31	0/839	0.53	0/1143
20	4J	0.31	0/812	0.53	0/1108
20	7J	0.31	0/839	0.51	0/1143
20	8J	0.31	0/839	0.53	0/1143
20	9J	0.31	0/812	0.53	0/1108
21	2K	0.31	0/392	0.50	0/531
21	3K	0.33	0/392	0.51	0/531
21	4K	0.33	0/392	0.51	0/531
21	7K	0.31	0/392	0.51	0/531
21	8K	0.33	0/392	0.51	0/531
21	9K	0.33	0/392	0.51	0/531
22	2L	0.31	0/621	0.56	0/841
22	3L	0.30	0/645	0.55	0/875
22	4L	0.30	0/645	0.55	0/875
22	7L	0.32	0/621	0.56	0/841
22	8L	0.30	0/645	0.56	0/875
22	9L	0.30	0/645	0.55	0/875
23	5A	0.25	0/1878	0.46	0/2549
23	А	0.25	0/1878	0.46	0/2549
24	5B	0.25	0/3400	0.48	0/4573
24	В	0.25	0/3400	0.48	0/4573
25	$5\mathrm{C}$	0.25	0/5272	0.49	0/7143
25	С	0.25	0/5272	0.49	0/7143

Mal	Chain	Bond	lengths	B	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
26	5D	0.26	0/1843	0.50	0/2506
26	D	0.25	0/1843	0.50	0/2506
27	$5\mathrm{E}$	0.25	0/3181	0.49	0/4303
27	Е	0.25	0/3181	0.49	0/4303
28	5F	0.25	0/1258	0.47	0/1706
28	F	0.25	0/1258	0.47	0/1706
29	$5\mathrm{G}$	0.25	0/1648	0.51	0/2222
29	G	0.25	0/1648	0.51	0/2222
30	5H	0.25	0/773	0.51	0/1046
30	Н	0.25	0/773	0.51	0/1046
31	5I	0.24	0/1061	0.43	0/1441
31	Ι	0.24	0/1061	0.43	0/1441
32	5J	0.25	0/649	0.41	0/875
32	5r	0.26	0/673	0.40	0/906
32	J	0.26	0/649	0.41	0/875
32	r	0.26	0/673	0.40	0/906
33	5K	0.26	0/1007	0.47	0/1348
33	Κ	0.26	0/1007	0.47	0/1348
34	5L	0.26	0/1306	0.50	0/1769
34	L	0.26	0/1306	0.50	0/1769
35	5M	0.24	0/936	0.43	0/1276
35	М	0.24	0/936	0.43	0/1276
36	5N	0.25	0/1277	0.48	0/1735
36	Ν	0.25	0/1277	0.48	0/1735
37	50	0.25	0/772	0.51	0/1037
37	0	0.25	0/772	0.51	0/1037
38	5P	0.25	0/2879	0.49	0/3905
38	Р	0.25	0/2879	0.49	0/3905
39	5Q	0.27	0/2234	0.45	0/3034
39	Q	0.27	0/2234	0.45	0/3034
40	5R	0.26	0/3075	0.44	0/4191
40	R	0.26	0/3075	0.44	0/4191
41	5S	0.26	0/1106	0.45	0/1512
41	S	0.26	0/1106	0.45	0/1512
42	$5\mathrm{T}$	0.27	0/3533	0.44	0/4825
42	Т	0.27	0/3533	0.44	0/4825
43	$5\mathrm{U}$	0.27	0/819	0.45	0/1112
43	U	0.27	0/819	0.45	$0/111\overline{2}$
44	5V	0.26	$0/42\overline{58}$	0.45	$0/579\overline{2}$
44	V	0.26	$0/42\overline{58}$	0.44	$0/579\overline{2}$
45	5W	0.26	$0/1\overline{239}$	0.44	$0/1\overline{686}$
45	W	0.26	0/1239	0.43	0/1686
46	5X	0.26	0/1081	0.47	$0/1\overline{479}$

Mol	Chain	Bond	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5		
46	Х	0.26	0/1081	0.47	0/1479		
47	5Y	0.25	0/411	0.45	0/557		
47	Y	0.25	0/411	0.45	0/557		
48	5Z	0.25	0/894	0.45	0/1218		
48	Ζ	0.25	0/894	0.46	0/1218		
49	5a	0.35	0/698	0.47	0/949		
49	a	0.36	0/698	0.49	0/949		
50	5b	0.25	0/1201	0.46	0/1623		
50	b	0.25	0/1201	0.45	0/1623		
51	5c	0.25	0/463	0.41	0/623		
51	с	0.25	0/463	0.41	0/623		
52	5d	0.27	0/721	0.47	0/968		
52	d	0.27	0/721	0.47	0/968		
53	5e	0.27	0/1688	0.47	0/2301		
53	е	0.27	0/1688	0.47	0/2301		
54	5f	0.24	0/547	0.42	0/740		
54	f	0.24	0/547	0.42	0/740		
55	$5\mathrm{g}$	0.33	0/433	0.51	0/587		
55	g	0.26	0/433	0.44	0/587		
56	5h	0.25	0/948	0.47	0/1285		
56	h	0.25	0/948	0.46	0/1285		
57	5i	0.23	0/644	0.52	0/860		
57	i	0.23	0/644	0.53	0/860		
58	5j	0.26	0/732	0.48	0/983		
58	j	0.26	0/732	0.48	0/983		
59	5k	0.25	0/1011	0.47	0/1361		
59	k	0.25	0/1011	0.47	0/1361		
60	51	0.25	0/936	0.41	0/1278		
60	1	0.25	0/936	0.41	0/1278		
61	$5\mathrm{m}$	0.25	0/1155	0.48	0/1558		
61	m	0.25	0/1155	0.48	0/1558		
62	5n	0.24	0/886	0.43	0/1188		
62	n	0.24	0/886	0.43	0/1188		
63	50	0.25	0/1265	0.49	0/1705		
63	0	0.25	0/1265	0.49	0/1705		
64	5p	0.25	0/1095	0.50	0/1480		
64	р	0.25	0/1095	0.50	0/1480		
65	5q	0.26	0/1308	0.46	0/1779		
65	q	0.26	0/1308	0.46	0/1779		
66	5s	0.26	0/2353	0.47	0/3202		
66	s	0.26	0/2353	0.47	0/3202		
67	5t	0.25	0/2043	0.51	0/2778		
67	t	0.25	0/2043	0.50	0/2778		

Mal	Chain	Bond	lengths	E	Bond angles
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
68	$5\mathrm{u}$	0.26	0/1730	0.48	0/2341
68	u	0.25	0/1730	0.48	0/2341
69	5v	0.24	0/369	0.45	0/498
69	V	0.24	0/369	0.45	0/498
70	5w	0.27	0/521	0.42	0/702
70	W	0.27	0/521	0.42	0/702
71	5x	0.28	0/727	0.43	0/994
71	Х	0.28	0/727	0.43	0/994
72	5y	0.27	0/963	0.46	0/1313
72	У	0.27	0/963	0.46	0/1313
All	All	0.29	0/298402	0.50	17/405254~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	1A	0	1
1	1B	0	1
1	6A	0	1
1	6B	0	1
17	3G	0	1
17	$4\mathrm{G}$	0	1
17	8G	0	1
17	9G	0	1
53	5e	0	1
53	е	0	1
All	All	0	10

There are no bond length outliers.

All (17) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
17	2G	74	LEU	CA-CB-CG	6.56	130.38	115.30
17	7G	74	LEU	CA-CB-CG	6.53	130.31	115.30
17	8G	74	LEU	CA-CB-CG	6.45	130.13	115.30
17	9G	74	LEU	CA-CB-CG	6.45	130.13	115.30
17	4G	74	LEU	CA-CB-CG	6.45	130.12	115.30
17	3G	74	LEU	CA-CB-CG	6.44	130.12	115.30
11	3A	417	LEU	CA-CB-CG	6.25	129.69	115.30
11	8A	417	LEU	CA-CB-CG	6.25	129.67	115.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	9A	417	LEU	CA-CB-CG	6.25	129.67	115.30
11	4A	417	LEU	CA-CB-CG	6.25	129.67	115.30
9	1Q	59	ALA	N-CA-C	-5.92	95.01	111.00
11	2A	417	LEU	CA-CB-CG	5.63	128.26	115.30
11	7A	417	LEU	CA-CB-CG	5.63	128.24	115.30
3	6E	110	CYS	CA-CB-SG	5.16	123.28	114.00
3	1E	110	CYS	CA-CB-SG	5.14	123.25	114.00
1	1A	150	LEU	CA-CB-CG	5.07	126.95	115.30
1	6A	150	LEU	CA-CB-CG	5.06	126.94	115.30

There are no chirality outliers.

All	(10)	planarity	outliers	are	listed	below:

Mol	Chain	\mathbf{Res}	Type	Group
1	1A	184	TYR	Sidechain
1	1B	184	TYR	Sidechain
17	$3\mathrm{G}$	114	TRP	Peptide
17	$4\mathrm{G}$	114	TRP	Peptide
53	5e	147	MET	Peptide
1	6A	184	TYR	Sidechain
1	6B	184	TYR	Sidechain
17	8G	114	TRP	Peptide
17	9G	114	TRP	Peptide
53	е	147	MET	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	1A	374/381~(98%)	363~(97%)	11 (3%)	0	100	100
1	1B	374/381~(98%)	366~(98%)	8 (2%)	0	100	100
1	6A	374/381~(98%)	363~(97%)	11 (3%)	0	100	100
1	6B	374/381~(98%)	366 (98%)	8 (2%)	0	100	100
2	1C	205/262~(78%)	194 (95%)	11 (5%)	0	100	100
2	1D	205/262~(78%)	201 (98%)	4 (2%)	0	100	100
2	6C	205/262~(78%)	194 (95%)	11 (5%)	0	100	100
2	6D	205/262~(78%)	201 (98%)	4 (2%)	0	100	100
3	1E	241/314 (77%)	236 (98%)	5 (2%)	0	100	100
3	1F	241/314~(77%)	235 (98%)	6 (2%)	0	100	100
3	6E	241/314~(77%)	236 (98%)	5 (2%)	0	100	100
3	6F	241/314~(77%)	235 (98%)	6 (2%)	0	100	100
4	1G	57/60~(95%)	57 (100%)	0	0	100	100
4	1H	57/60~(95%)	57 (100%)	0	0	100	100
4	6G	57/60~(95%)	57 (100%)	0	0	100	100
4	6H	57/60~(95%)	57 (100%)	0	0	100	100
5	1I	66/69~(96%)	66 (100%)	0	0	100	100
5	1J	66/69~(96%)	64 (97%)	2 (3%)	0	100	100
5	6I	66/69~(96%)	66 (100%)	0	0	100	100
5	6J	66/69~(96%)	64 (97%)	2 (3%)	0	100	100
6	1K	68/73~(93%)	67 (98%)	1 (2%)	0	100	100
6	1L	68/73~(93%)	65 (96%)	3 (4%)	0	100	100
6	6K	68/73~(93%)	67 (98%)	1 (2%)	0	100	100
6	6L	68/73~(93%)	65 (96%)	3 (4%)	0	100	100
7	1M	462/495~(93%)	454 (98%)	8 (2%)	0	100	100
7	1N	462/495~(93%)	456 (99%)	5 (1%)	1 (0%)	44	78
7	6M	$\overline{462/495}~(93\%)$	454 (98%)	8 (2%)	0	100	100
7	6N	$\overline{462/495}~(93\%)$	456 (99%)	5 (1%)	1 (0%)	44	78
8	10	$46/\overline{59}\ (78\%)$	43 (94%)	3 (6%)	0	100	100
8	1P	46/59~(78%)	44 (96%)	2 (4%)	0	100	100
8	6O	$46/\overline{59}\ (78\%)$	43 (94%)	3 (6%)	0	100	100
8	6P	46/59~(78%)	44 (96%)	2 (4%)	0	100	100

Continued from previous page							
Mol	Chain	Analysed	Favoured				
9	1Q	439/485~(90%)	419 (95%)				
9	1S	439/485~(90%)	424 (97%)				

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
9	1Q	439/485~(90%)	419 (95%)	19 (4%)	1 (0%)	44	78
9	1S	439/485~(90%)	424 (97%)	13 (3%)	2 (0%)	25	64
9	6Q	439/485~(90%)	416 (95%)	22~(5%)	1 (0%)	44	78
9	6S	439/485~(90%)	424 (97%)	13 (3%)	2 (0%)	25	64
10	1R	120/123~(98%)	118 (98%)	2 (2%)	0	100	100
10	1T	120/123~(98%)	117 (98%)	3 (2%)	0	100	100
10	6R	120/123~(98%)	118 (98%)	2 (2%)	0	100	100
10	6T	120/123~(98%)	117 (98%)	3 (2%)	0	100	100
11	2A	502/505~(99%)	487 (97%)	15 (3%)	0	100	100
11	3A	502/505~(99%)	490 (98%)	12 (2%)	0	100	100
11	4A	502/505~(99%)	490 (98%)	12 (2%)	0	100	100
11	7A	502/505~(99%)	488 (97%)	14 (3%)	0	100	100
11	8A	502/505~(99%)	490 (98%)	12 (2%)	0	100	100
11	9A	502/505~(99%)	490 (98%)	12 (2%)	0	100	100
12	2B	139/284~(49%)	136 (98%)	3 (2%)	0	100	100
12	3B	139/284~(49%)	134 (96%)	5 (4%)	0	100	100
12	4B	139/284~(49%)	134 (96%)	5 (4%)	0	100	100
12	7B	139/284~(49%)	136 (98%)	3 (2%)	0	100	100
12	8B	139/284~(49%)	134 (96%)	5 (4%)	0	100	100
12	9B	139/284~(49%)	135 (97%)	4 (3%)	0	100	100
13	2C	151/153~(99%)	144 (95%)	7 (5%)	0	100	100
13	3C	151/153~(99%)	145 (96%)	6 (4%)	0	100	100
13	4C	151/153~(99%)	145 (96%)	6 (4%)	0	100	100
13	7C	151/153~(99%)	144 (95%)	7 (5%)	0	100	100
13	8C	151/153~(99%)	145 (96%)	6 (4%)	0	100	100
13	9C	151/153~(99%)	145 (96%)	6 (4%)	0	100	100
14	2D	264/382~(69%)	255 (97%)	9 (3%)	0	100	100
14	3D	264/382~(69%)	254 (96%)	10 (4%)	0	100	100
14	4D	264/382~(69%)	254 (96%)	10 (4%)	0	100	100
14	7D	264/382~(69%)	255 (97%)	9 (3%)	0	100	100
14	8D	264/382~(69%)	254 (96%)	10 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
14	9D	264/382~(69%)	254 (96%)	10 (4%)	0	100	100
15	$2\mathrm{E}$	88/175~(50%)	85~(97%)	2(2%)	1 (1%)	12	46
15	3E	88/175~(50%)	85~(97%)	2(2%)	1 (1%)	12	46
15	$4\mathrm{E}$	88/175~(50%)	85~(97%)	2 (2%)	1 (1%)	12	46
15	$7\mathrm{E}$	88/175~(50%)	85~(97%)	2(2%)	1 (1%)	12	46
15	8E	88/175~(50%)	85~(97%)	2 (2%)	1 (1%)	12	46
15	$9\mathrm{E}$	88/175~(50%)	85 (97%)	2 (2%)	1 (1%)	12	46
16	$2\mathrm{F}$	84/96~(88%)	81 (96%)	3 (4%)	0	100	100
16	3F	84/96~(88%)	80 (95%)	4 (5%)	0	100	100
16	$4\mathrm{F}$	84/96~(88%)	80~(95%)	4 (5%)	0	100	100
16	$7\mathrm{F}$	84/96~(88%)	81 (96%)	3 (4%)	0	100	100
16	8F	84/96~(88%)	80~(95%)	4 (5%)	0	100	100
16	$9\mathrm{F}$	84/96~(88%)	80 (95%)	4 (5%)	0	100	100
17	$2\mathrm{G}$	87/125~(70%)	78~(90%)	9 (10%)	0	100	100
17	$3\mathrm{G}$	87/125~(70%)	80 (92%)	7 (8%)	0	100	100
17	$4\mathrm{G}$	87/125~(70%)	80 (92%)	7 (8%)	0	100	100
17	7G	87/125~(70%)	78~(90%)	9 (10%)	0	100	100
17	8G	87/125~(70%)	80 (92%)	7 (8%)	0	100	100
17	9G	87/125~(70%)	80~(92%)	7 (8%)	0	100	100
18	$2\mathrm{H}$	112/148~(76%)	108~(96%)	4 (4%)	0	100	100
18	$3\mathrm{H}$	112/148~(76%)	108~(96%)	4 (4%)	0	100	100
18	$4\mathrm{H}$	112/148~(76%)	108 (96%)	4 (4%)	0	100	100
18	$7\mathrm{H}$	112/148~(76%)	108~(96%)	4 (4%)	0	100	100
18	$8\mathrm{H}$	112/148~(76%)	108~(96%)	4 (4%)	0	100	100
18	9H	112/148~(76%)	108~(96%)	4 (4%)	0	100	100
19	2I	70/101~(69%)	67~(96%)	3 (4%)	0	100	100
19	3I	70/101~(69%)	67~(96%)	3 (4%)	0	100	100
19	4I	70/101~(69%)	67~(96%)	3 (4%)	0	100	100
19	7I	70/101~(69%)	67~(96%)	3 (4%)	0	100	100
19	8I	$70/101$ ($\overline{69\%}$)	67~(96%)	3 (4%)	0	100	100
19	9I	70/101~(69%)	67~(96%)	3 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
20	2J	102/105~(97%)	100 (98%)	2(2%)	0	100	100
20	3J	102/105~(97%)	100 (98%)	2 (2%)	0	100	100
20	4J	99/105~(94%)	98~(99%)	1 (1%)	0	100	100
20	7J	102/105~(97%)	100 (98%)	2 (2%)	0	100	100
20	8J	102/105~(97%)	100 (98%)	2 (2%)	0	100	100
20	9J	99/105~(94%)	98 (99%)	1 (1%)	0	100	100
21	2K	45/58~(78%)	44 (98%)	1 (2%)	0	100	100
21	3K	45/58~(78%)	44 (98%)	1 (2%)	0	100	100
21	4K	45/58~(78%)	44 (98%)	1 (2%)	0	100	100
21	7K	45/58~(78%)	44 (98%)	1 (2%)	0	100	100
21	8K	45/58~(78%)	44 (98%)	1 (2%)	0	100	100
21	9K	45/58~(78%)	44 (98%)	1 (2%)	0	100	100
22	2L	74/87~(85%)	70 (95%)	4 (5%)	0	100	100
22	3L	76/87~(87%)	72 (95%)	4 (5%)	0	100	100
22	4L	76/87~(87%)	72 (95%)	4 (5%)	0	100	100
22	7L	74/87~(85%)	70 (95%)	4 (5%)	0	100	100
22	8L	76/87~(87%)	72 (95%)	4(5%)	0	100	100
22	9L	76/87~(87%)	72 (95%)	4 (5%)	0	100	100
23	5A	237/282~(84%)	232~(98%)	5 (2%)	0	100	100
23	А	237/282~(84%)	232~(98%)	5 (2%)	0	100	100
24	5B	433/484~(90%)	425~(98%)	8 (2%)	0	100	100
24	В	433/484~(90%)	425~(98%)	8 (2%)	0	100	100
25	$5\mathrm{C}$	686/733~(94%)	668 (97%)	18 (3%)	0	100	100
25	С	686/733~(94%)	668~(97%)	18 (3%)	0	100	100
26	$5\mathrm{D}$	214/282~(76%)	204 (95%)	10 (5%)	0	100	100
26	D	214/282~(76%)	205~(96%)	9 (4%)	0	100	100
27	$5\mathrm{E}$	382/467~(82%)	367~(96%)	15 (4%)	0	100	100
27	Е	382/467~(82%)	367 (96%)	15 (4%)	0	100	100
28	$5\mathrm{F}$	155/164 (94%)	149 (96%)	6 (4%)	0	100	100
28	F	155/164~(94%)	149 (96%)	6 (4%)	0	100	100
29	$5\mathrm{G}$	197/231~(85%)	190 (96%)	7 (4%)	0	100	100

\mathbf{Mol}	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
29	G	197/231~(85%)	190 (96%)	7 (4%)	0	100	100
30	$5\mathrm{H}$	88/118~(75%)	83~(94%)	5~(6%)	0	100	100
30	Н	88/118~(75%)	83~(94%)	5~(6%)	0	100	100
31	5I	133/165~(81%)	131~(98%)	2(2%)	0	100	100
31	Ι	133/165~(81%)	131~(98%)	2 (2%)	0	100	100
32	$5 \mathrm{J}$	82/128~(64%)	79~(96%)	3~(4%)	0	100	100
32	5r	86/128~(67%)	81 (94%)	5~(6%)	0	100	100
32	J	82/128~(64%)	80~(98%)	2 (2%)	0	100	100
32	r	86/128~(67%)	81~(94%)	5~(6%)	0	100	100
33	$5\mathrm{K}$	117/138~(85%)	114 (97%)	3~(3%)	0	100	100
33	Κ	117/138~(85%)	114 (97%)	3~(3%)	0	100	100
34	5L	162/187~(87%)	157~(97%)	5~(3%)	0	100	100
34	L	162/187~(87%)	157~(97%)	5~(3%)	0	100	100
35	$5\mathrm{M}$	119/154~(77%)	114 (96%)	5(4%)	0	100	100
35	М	119/154~(77%)	114 (96%)	5~(4%)	0	100	100
36	5N	148/156~(95%)	145 (98%)	3~(2%)	0	100	100
36	Ν	148/156~(95%)	145~(98%)	3~(2%)	0	100	100
37	5O	98/101~(97%)	96~(98%)	2~(2%)	0	100	100
37	О	98/101~(97%)	96~(98%)	2 (2%)	0	100	100
38	$5\mathrm{P}$	361/397~(91%)	351~(97%)	9~(2%)	1 (0%)	37	72
38	Р	361/397~(91%)	351 (97%)	9(2%)	1 (0%)	37	72
39	5Q	282/292~(97%)	272 (96%)	10 (4%)	0	100	100
39	Q	282/292~(97%)	272~(96%)	10 (4%)	0	100	100
40	$5\mathrm{R}$	381/387~(98%)	365~(96%)	16 (4%)	0	100	100
40	R	381/387~(98%)	366~(96%)	15 (4%)	0	100	100
41	5S	130/279~(47%)	129 (99%)	1 (1%)	0	100	100
41	S	130/279~(47%)	129 (99%)	1 (1%)	0	100	100
42	$5\mathrm{T}$	441/443 (100%)	428 (97%)	13 (3%)	0	100	100
42	Т	441/443 (100%)	428 (97%)	13 (3%)	0	100	100
43	$5\mathrm{U}$	103/227~(45%)	101 (98%)	2 (2%)	0	100	100
43	U	103/227~(45%)	101 (98%)	2 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
44	$5\mathrm{V}$	544/546~(100%)	525~(96%)	18 (3%)	1 (0%)	44	78
44	V	544/546~(100%)	525~(96%)	18 (3%)	1 (0%)	44	78
45	5W	155/162~(96%)	148~(96%)	7~(4%)	0	100	100
45	W	155/162~(96%)	149~(96%)	6 (4%)	0	100	100
46	5X	123/149~(83%)	117~(95%)	6 (5%)	0	100	100
46	Х	123/149~(83%)	117~(95%)	6~(5%)	0	100	100
47	5Y	52/64~(81%)	52~(100%)	0	0	100	100
47	Y	52/64~(81%)	52 (100%)	0	0	100	100
48	$5\mathrm{Z}$	105/124~(85%)	103 (98%)	2(2%)	0	100	100
48	Ζ	105/124~(85%)	103~(98%)	2~(2%)	0	100	100
49	5a	80/129~(62%)	79~(99%)	0	1 (1%)	10	41
49	a	80/129~(62%)	78~(98%)	1 (1%)	1 (1%)	10	41
50	5b	142/172~(83%)	140 (99%)	2~(1%)	0	100	100
50	b	142/172~(83%)	141 (99%)	1 (1%)	0	100	100
51	5c	55/67~(82%)	51 (93%)	4(7%)	0	100	100
51	с	55/67~(82%)	51 (93%)	4(7%)	0	100	100
52	5d	83/86~(96%)	83 (100%)	0	0	100	100
52	d	83/86~(96%)	83 (100%)	0	0	100	100
53	5e	216/219~(99%)	211~(98%)	5(2%)	0	100	100
53	е	216/219~(99%)	211~(98%)	5(2%)	0	100	100
54	5f	62/65~(95%)	60~(97%)	2(3%)	0	100	100
54	f	62/65~(95%)	60~(97%)	2 (3%)	0	100	100
55	$5\mathrm{g}$	48/55~(87%)	43 (90%)	5~(10%)	0	100	100
55	g	48/55~(87%)	43 (90%)	5~(10%)	0	100	100
56	5h	106/142~(75%)	98~(92%)	8 (8%)	0	100	100
56	h	106/142~(75%)	98~(92%)	8 (8%)	0	100	100
57	5i	74/81~(91%)	74 (100%)	0	0	100	100
57	i	74/81 (91%)	74 (100%)	0	0	100	100
58	5j	83/86~(96%)	82 (99%)	1 (1%)	0	100	100
58	j	$83/\overline{86}\ (96\%)$	82~(99%)	1 (1%)	0	100	100
59	5k	115/117~(98%)	114 (99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
59	k	115/117~(98%)	114 (99%)	1 (1%)	0	100	100
60	51	114/121~(94%)	113 (99%)	1 (1%)	0	100	100
60	1	114/121~(94%)	113 (99%)	1 (1%)	0	100	100
61	$5\mathrm{m}$	134/142~(94%)	132 (98%)	2 (2%)	0	100	100
61	m	134/142~(94%)	132 (98%)	2(2%)	0	100	100
62	5n	102/106~(96%)	102 (100%)	0	0	100	100
62	n	102/106~(96%)	102 (100%)	0	0	100	100
63	50	150/155~(97%)	144 (96%)	6 (4%)	0	100	100
63	0	150/155~(97%)	144 (96%)	6 (4%)	0	100	100
64	$5\mathrm{p}$	127/130~(98%)	125 (98%)	2 (2%)	0	100	100
64	р	127/130~(98%)	125 (98%)	2 (2%)	0	100	100
65	5q	155/197~(79%)	150 (97%)	5 (3%)	0	100	100
65	q	155/197~(79%)	150 (97%)	5 (3%)	0	100	100
66	5s	310/312~(99%)	299 (96%)	11 (4%)	0	100	100
66	s	310/312~(99%)	299~(96%)	11 (4%)	0	100	100
67	5t	251/279~(90%)	243 (97%)	8 (3%)	0	100	100
67	t	251/279~(90%)	243 (97%)	8 (3%)	0	100	100
68	5u	226/229~(99%)	223~(99%)	3 (1%)	0	100	100
68	u	226/229~(99%)	223~(99%)	3 (1%)	0	100	100
69	5v	43/45~(96%)	43 (100%)	0	0	100	100
69	V	43/45~(96%)	43 (100%)	0	0	100	100
70	5w	62/109~(57%)	62 (100%)	0	0	100	100
70	W	62/109~(57%)	62 (100%)	0	0	100	100
71	5x	81/157~(52%)	81 (100%)	0	0	100	100
71	х	81/157~(52%)	81 (100%)	0	0	100	100
72	5y	112/118~(95%)	112 (100%)	0	0	100	100
72	У	112/118~(95%)	112 (100%)	0	0	100	100
All	All	36512/43212 (84%)	35417 (97%)	1075 (3%)	20 (0%)	50	83

All (20) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
9	1Q	396	ASP
	a	7	

Mol	Chain	Res	Type
15	2E	28	TRP
15	3E	28	TRP
15	4E	28	TRP
9	6Q	396	ASP
15	7E	28	TRP
15	8E	28	TRP
15	9E	28	TRP
49	5a	43	TYR
49	a	43	TYR
9	1S	66	THR
9	6S	66	THR
38	5P	370	VAL
38	Р	370	VAL
7	1N	187	VAL
9	1S	475	PRO
7	6N	187	VAL
9	6S	475	PRO
44	5V	519	PRO
44	V	519	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	1A	312/317~(98%)	311 (100%)	1 (0%)	91 92
1	1B	312/317~(98%)	309~(99%)	3~(1%)	73 82
1	6A	312/317~(98%)	311~(100%)	1 (0%)	91 92
1	6B	312/317~(98%)	309~(99%)	3~(1%)	73 82
2	$1\mathrm{C}$	171/213~(80%)	170~(99%)	1 (1%)	84 88
2	1D	171/213~(80%)	171 (100%)	0	100 100
2	6C	171/213~(80%)	170~(99%)	1 (1%)	84 88
2	6D	171/213~(80%)	171 (100%)	0	100 100
3	$1\mathrm{E}$	191/238~(80%)	191 (100%)	0	100 100

α $\cdot \cdot$ 1	e		
Continued	trom	previous	page
	5	1	1 0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
3	$1\mathrm{F}$	191/238~(80%)	191~(100%)	0	100	100
3	$6\mathrm{E}$	191/238~(80%)	191 (100%)	0	100	100
3	6F	191/238~(80%)	191~(100%)	0	100	100
4	1G	52/53~(98%)	52~(100%)	0	100	100
4	$1\mathrm{H}$	52/53~(98%)	52 (100%)	0	100	100
4	6G	52/53~(98%)	52 (100%)	0	100	100
4	6H	52/53~(98%)	52 (100%)	0	100	100
5	1I	58/59~(98%)	58 (100%)	0	100	100
5	1J	58/59~(98%)	58 (100%)	0	100	100
5	6I	58/59~(98%)	58 (100%)	0	100	100
5	6J	58/59~(98%)	58 (100%)	0	100	100
6	1K	62/64~(97%)	62 (100%)	0	100	100
6	1L	62/64~(97%)	62 (100%)	0	100	100
6	6K	62/64~(97%)	62 (100%)	0	100	100
6	6L	62/64~(97%)	62 (100%)	0	100	100
7	1M	390/413~(94%)	390 (100%)	0	100	100
7	1N	390/413~(94%)	388~(100%)	2 (0%)	86	89
7	6M	390/413~(94%)	390 (100%)	0	100	100
7	6N	390/413~(94%)	388~(100%)	2 (0%)	86	89
8	10	38/47~(81%)	38~(100%)	0	100	100
8	1P	38/47~(81%)	38~(100%)	0	100	100
8	6O	38/47~(81%)	38~(100%)	0	100	100
8	6P	38/47~(81%)	38~(100%)	0	100	100
9	1Q	333/362~(92%)	329~(99%)	4 (1%)	67	79
9	1S	333/362~(92%)	332 (100%)	1 (0%)	91	92
9	6Q	333/362~(92%)	328 (98%)	5 (2%)	60	75
9	6S	$\overline{333/362}~(92\%)$	332 (100%)	1 (0%)	91	92
10	1R	106/107~(99%)	106 (100%)	0	100	100
10	1T	$\overline{106/107}~(99\%)$	106 (100%)	0	100	100
10	6R	106/107~(99%)	106 (100%)	0	100	100
10	6T	$106/\overline{107}~(99\%)$	106 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
11	2A	408/409~(100%)	408 (100%)	0	100	100
11	3A	408/409~(100%)	408 (100%)	0	100	100
11	4A	408/409~(100%)	408 (100%)	0	100	100
11	7A	408/409~(100%)	408 (100%)	0	100	100
11	8A	408/409~(100%)	408 (100%)	0	100	100
11	9A	408/409~(100%)	408 (100%)	0	100	100
12	$2\mathrm{B}$	132/224~(59%)	132 (100%)	0	100	100
12	3B	132/224~(59%)	132 (100%)	0	100	100
12	4B	132/224~(59%)	132 (100%)	0	100	100
12	7B	132/224~(59%)	132 (100%)	0	100	100
12	8B	132/224~(59%)	132 (100%)	0	100	100
12	9B	132/224~(59%)	132 (100%)	0	100	100
13	$2\mathrm{C}$	137/137~(100%)	137 (100%)	0	100	100
13	3C	137/137~(100%)	137 (100%)	0	100	100
13	$4\mathrm{C}$	137/137~(100%)	137 (100%)	0	100	100
13	7C	137/137~(100%)	137 (100%)	0	100	100
13	8C	137/137~(100%)	137 (100%)	0	100	100
13	9C	137/137~(100%)	137 (100%)	0	100	100
14	2D	211/294~(72%)	211 (100%)	0	100	100
14	3D	211/294~(72%)	211 (100%)	0	100	100
14	4D	211/294~(72%)	211 (100%)	0	100	100
14	7D	211/294 (72%)	211 (100%)	0	100	100
14	8D	211/294~(72%)	211 (100%)	0	100	100
14	9D	211/294 (72%)	211 (100%)	0	100	100
15	2E	79/137~(58%)	79 (100%)	0	100	100
15	3E	79/137~(58%)	79 (100%)	0	100	100
15	4E	79/137~(58%)	79 (100%)	0	100	100
15	7E	79/137~(58%)	79 (100%)	0	100	100
15	8E	79/137~(58%)	79 (100%)	0	100	100
15	$9\mathrm{E}$	79/137~(58%)	79 (100%)	0	100	100
16	2F	66/72~(92%)	66 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
16	3F	66/72~(92%)	66~(100%)	0	100	100
16	$4\mathrm{F}$	66/72~(92%)	66~(100%)	0	100	100
16	$7\mathrm{F}$	66/72~(92%)	66~(100%)	0	100	100
16	8F	66/72~(92%)	66~(100%)	0	100	100
16	9F	66/72~(92%)	66~(100%)	0	100	100
17	$2\mathrm{G}$	75/100~(75%)	75 (100%)	0	100	100
17	3G	75/100~(75%)	74 (99%)	1 (1%)	65	77
17	$4\mathrm{G}$	75/100~(75%)	74 (99%)	1 (1%)	65	77
17	$7\mathrm{G}$	75/100~(75%)	75 (100%)	0	100	100
17	8G	75/100~(75%)	74 (99%)	1 (1%)	65	77
17	9G	75/100~(75%)	74 (99%)	1 (1%)	65	77
18	2H	103/132~(78%)	103 (100%)	0	100	100
18	3H	103/132~(78%)	103 (100%)	0	100	100
18	4H	103/132~(78%)	103 (100%)	0	100	100
18	7H	103/132~(78%)	103 (100%)	0	100	100
18	8H	103/132~(78%)	103 (100%)	0	100	100
18	9H	103/132~(78%)	103 (100%)	0	100	100
19	2I	58/80~(72%)	58 (100%)	0	100	100
19	3I	58/80~(72%)	58 (100%)	0	100	100
19	4I	58/80~(72%)	58 (100%)	0	100	100
19	7I	58/80~(72%)	58 (100%)	0	100	100
19	8I	58/80~(72%)	58 (100%)	0	100	100
19	9I	58/80~(72%)	58 (100%)	0	100	100
20	2J	83/84~(99%)	83 (100%)	0	100	100
20	3J	83/84~(99%)	83 (100%)	0	100	100
20	4J	80/84~(95%)	80 (100%)	0	100	100
20	7J	83/84~(99%)	83 (100%)	0	100	100
20	8J	83/84~(99%)	83 (100%)	0	100	100
20	9J	80/84~(95%)	80 (100%)	0	100	100
21	2K	39/46~(85%)	39 (100%)	0	100	100
21	3K	39/46~(85%)	39 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
21	$4\mathrm{K}$	39/46~(85%)	39~(100%)	0	100	100
21	$7\mathrm{K}$	39/46~(85%)	39~(100%)	0	100	100
21	8K	39/46~(85%)	39~(100%)	0	100	100
21	9K	39/46~(85%)	39~(100%)	0	100	100
22	2L	63/74~(85%)	63 (100%)	0	100	100
22	3L	65/74~(88%)	65 (100%)	0	100	100
22	4L	65/74~(88%)	65 (100%)	0	100	100
22	7L	63/74~(85%)	63 (100%)	0	100	100
22	8L	65/74~(88%)	65 (100%)	0	100	100
22	9L	65/74~(88%)	65 (100%)	0	100	100
23	5A	197/228~(86%)	197 (100%)	0	100	100
23	А	197/228~(86%)	197 (100%)	0	100	100
24	5B	344/377~(91%)	344 (100%)	0	100	100
24	В	344/377~(91%)	344 (100%)	0	100	100
25	$5\mathrm{C}$	537/572~(94%)	536 (100%)	1 (0%)	92	94
25	С	537/572~(94%)	536 (100%)	1 (0%)	92	94
26	5D	196/248~(79%)	196 (100%)	0	100	100
26	D	196/248~(79%)	196 (100%)	0	100	100
27	$5\mathrm{E}$	332/388~(86%)	332 (100%)	0	100	100
27	Е	332/388~(86%)	332 (100%)	0	100	100
28	$5\mathrm{F}$	129/133~(97%)	129 (100%)	0	100	100
28	F	129/133~(97%)	129 (100%)	0	100	100
29	$5\mathrm{G}$	172/198~(87%)	172 (100%)	0	100	100
29	G	172/198~(87%)	172 (100%)	0	100	100
30	$5\mathrm{H}$	82/105~(78%)	82 (100%)	0	100	100
30	Н	82/105~(78%)	82 (100%)	0	100	100
31	5I	111/134 (83%)	111 (100%)	0	100	100
31	Ι	111/134 (83%)	111 (100%)	0	100	100
32	5J	71/108~(66%)	71 (100%)	0	100	100
32	5r	72/108~(67%)	72 (100%)	0	100	100
32	J	71/108~(66%)	71 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	P	Percentiles	
32	r	72/108~(67%)	72~(100%)	0		100	100
33	$5\mathrm{K}$	106/122~(87%)	106 (100%)	0		100	100
33	Κ	106/122~(87%)	106 (100%)	0		100	100
34	5L	130/148~(88%)	130 (100%)	0		100	100
34	L	130/148~(88%)	130 (100%)	0		100	100
35	5M	100/121~(83%)	100 (100%)	0		100	100
35	М	100/121~(83%)	100 (100%)	0		100	100
36	5N	128/132~(97%)	128 (100%)	0		100	100
36	Ν	128/132~(97%)	128 (100%)	0		100	100
37	50	80/81~(99%)	80 (100%)	0		100	100
37	О	80/81~(99%)	80 (100%)	0		100	100
38	5P	305/327~(93%)	305 (100%)	0		100	100
38	Р	305/327~(93%)	305 (100%)	0		100	100
39	5Q	230/234~(98%)	230 (100%)	0		100	100
39	Q	230/234~(98%)	230 (100%)	0		100	100
40	5R	321/321~(100%)	321 (100%)	0		100	100
40	R	321/321~(100%)	321 (100%)	0		100	100
41	5S	111/217~(51%)	111 (100%)	0		100	100
41	S	111/217~(51%)	111 (100%)	0		100	100
42	$5\mathrm{T}$	374/374~(100%)	374 (100%)	0		100	100
42	Т	374/374~(100%)	374 (100%)	0		100	100
43	$5\mathrm{U}$	84/180~(47%)	84 (100%)	0		100	100
43	U	84/180~(47%)	84 (100%)	0		100	100
44	5V	439/439~(100%)	439 (100%)	0		100	100
44	V	439/439~(100%)	439 (100%)	0		100	100
45	5W	131/135~(97%)	131 (100%)	0		100	100
45	W	131/135~(97%)	131 (100%)	0		100	100
46	5X	105/122~(86%)	105 (100%)	0		100	100
46	Х	105/122~(86%)	105 (100%)	0		100	100
47	5Y	38/46~(83%)	38 (100%)	0		100	100
47	Y	38/46 (83%)	38 (100%)	0		100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentile		
48	$5\mathrm{Z}$	93/102~(91%)	93~(100%)	0	100	100	
48	Ζ	93/102~(91%)	93~(100%)	0	100	100	
49	5a	68/98~(69%)	68~(100%)	0	100	100	
49	a	68/98~(69%)	67~(98%)	1 (2%)	60	75	
50	$5\mathrm{b}$	119/138~(86%)	119 (100%)	0	100	100	
50	b	119/138~(86%)	119 (100%)	0	100	100	
51	5c	49/56~(88%)	49 (100%)	0	100	100	
51	с	49/56~(88%)	49 (100%)	0	100	100	
52	5d	63/64~(98%)	63 (100%)	0	100	100	
52	d	63/64~(98%)	63 (100%)	0	100	100	
53	5e	163/164~(99%)	163 (100%)	0	100	100	
53	е	163/164~(99%)	163 (100%)	0	100	100	
54	5f	52/53~(98%)	52 (100%)	0	100	100	
54	f	52/53~(98%)	52 (100%)	0	100	100	
55	$5\mathrm{g}$	40/45~(89%)	40 (100%)	0	100	100	
55	g	40/45~(89%)	40 (100%)	0	100	100	
56	5h	91/110 (83%)	91 (100%)	0	100	100	
56	h	91/110 (83%)	91 (100%)	0	100	100	
57	5i	65/67~(97%)	65 (100%)	0	100	100	
57	i	65/67~(97%)	65 (100%)	0	100	100	
58	5j	72/73~(99%)	72 (100%)	0	100	100	
58	j	72/73~(99%)	72 (100%)	0	100	100	
59	5k	102/102~(100%)	102 (100%)	0	100	100	
59	k	102/102~(100%)	102 (100%)	0	100	100	
60	51	94/99~(95%)	93 (99%)	1 (1%)	70	80	
60	1	94/99~(95%)	93 (99%)	1 (1%)	70	80	
61	$5\mathrm{m}$	118/122~(97%)	118 (100%)	0	100	100	
61	m	118/122~(97%)	118 (100%)	0	100	100	
62	5n	92/94~(98%)	92 (100%)	0	100	100	
62	n	92/94~(98%)	92 (100%)	0	100	100	
63	50	130/132~(98%)	130 (100%)	0	100	100	

Mol	Chain	Analysed	Rotameric	Outliers Per		rcentiles	
63	0	130/132~(98%)	130 (100%)	0	100	100	
64	5p	109/110~(99%)	109 (100%)	0	100	100	
64	р	109/110~(99%)	109 (100%)	0	100	100	
65	5q	135/165~(82%)	135 (100%)	0	100	100	
65	q	135/165~(82%)	135 (100%)	0	100	100	
66	5s	243/243~(100%)	243 (100%)	0	100	100	
66	S	243/243~(100%)	243 (100%)	0	100	100	
67	5t	212/233~(91%)	212 (100%)	0	100	100	
67	t	212/233~(91%)	212 (100%)	0	100	100	
68	5u	180/181~(99%)	179~(99%)	1 (1%)	84	88	
68	u	180/181~(99%)	179~(99%)	1 (1%)	84	88	
69	5v	38/38~(100%)	38 (100%)	0	100	100	
69	v	38/38~(100%)	38 (100%)	0	100	100	
70	5w	55/91~(60%)	55 (100%)	0	100	100	
70	W	55/91~(60%)	55 (100%)	0	100	100	
71	5x	70/130~(54%)	70 (100%)	0	100	100	
71	х	70/130~(54%)	70 (100%)	0	100	100	
72	5у	102/106~(96%)	102 (100%)	0	100	100	
72	У	102/106~(96%)	102 (100%)	0	100	100	
All	All	30538/35054 (87%)	30502 (100%)	36 (0%)	92	95	

All (36) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	1A	316	ARG
1	1B	79	ARG
1	1B	261	ASN
1	1B	316	ARG
2	1C	230	HIS
7	1N	171	ARG
7	1N	488	ARG
9	1Q	56	LYS
9	1Q	65	ARG
9	1Q	81	ARG
9	1Q	483	ARG

	0	1	1 0
Mol	Chain	Res	Type
9	1S	216	ARG
17	3G	109	ARG
17	4G	109	ARG
25	5C	593	ARG
60	51	84	LYS
68	5u	43	ASN
1	6A	316	ARG
1	6B	79	ARG
1	6B	261	ASN
1	6B	316	ARG
2	6C	230	HIS
7	6N	171	ARG
7	6N	488	ARG
9	6Q	56	LYS
9	6Q	65	ARG
9	6Q	72	LYS
9	6Q	81	ARG
9	6Q	483	ARG
9	6S	216	ARG
17	8G	109	ARG
17	9G	109	ARG
25	С	593	ARG
49	a	67	LYS
60	1	84	LYS
68	u	43	ASN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (41) such sidechains are listed below:

Mol	Chain	Res	Type
1	1B	261	ASN
16	2F	63	GLN
16	3F	56	ASN
30	$5\mathrm{H}$	75	ASN
33	5K	39	GLN
38	5P	93	HIS
39	5Q	267	GLN
44	5V	113	ASN
45	5W	140	ASN
48	5Z	41	HIS
49	5a	44	ASN
49	5a	53	GLN
53	5e	89	GLN

Mol	Chain	Res	Type
53	5e	149	GLN
53	5e	186	HIS
63	50	54	ASN
32	5r	62	HIS
66	5s	71	HIS
66	5s	296	GLN
71	5x	12	ASN
1	6B	261	ASN
16	$7\mathrm{F}$	63	GLN
16	8F	56	ASN
30	Н	75	ASN
33	K	39	GLN
38	Р	93	HIS
39	Q	267	GLN
44	V	113	ASN
45	W	140	ASN
48	Z	41	HIS
49	a	44	ASN
49	a	53	GLN
49	a	70	HIS
53	е	89	GLN
53	е	149	GLN
53	е	186	HIS
63	0	54	ASN
32	r	62	HIS
66	S	71	HIS
66	S	296	GLN
71	Х	12	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 74 ligands modelled in this entry, 18 are monoatomic - leaving 56 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Type	Chain	Bos	Link	Bond lengths		Bond angles		les	
	Type	Ullalli	Ites		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
80	FES	5C	801	25	0,4,4	-	-	-		
82	SF4	G	301	29	0,12,12	-	-	-		
76	HEA	2A	602	11	57,67,67	2.06	17 (29%)	61,103,103	2.43	25 (40%)
82	SF4	F	201	28	0,12,12	-	-	-		
79	CUA	7C	301	-	0,1,1	-		-		
84	NDP	Р	401	-	45,52,52	2.25	4 (8%)	53,80,80	1.73	11 (20%)
76	HEA	3A	604	11	57,67,67	2.07	15 (26%)	61,103,103	2.47	23 (37%)
81	FMN	В	502	-	33,33,33	1.08	2 (6%)	48,50,50	1.17	7 (14%)
82	SF4	5G	302	29	0,12,12	-	-	-		
76	HEA	9A	602	11	57,67,67	2.04	15 (26%)	61,103,103	2.41	25 (40%)
81	FMN	5B	501	-	33,33,33	1.08	2 (6%)	48,50,50	1.16	7 (14%)
74	HEC	6F	501	3	32,50,50	2.09	3 (9%)	24,82,82	1.85	<mark>6 (25%)</mark>
83	8Q1	5J	200	-	31,34,34	1.72	5 (16%)	40,43,43	1.54	5 (12%)
76	HEA	4A	604	11	57,67,67	2.04	17 (29%)	61,103,103	2.41	25 (40%)
83	8Q1	k	200	-	31,34,34	1.74	5 (16%)	40,43,43	1.68	7 (17%)
82	SF4	С	801	25	0,12,12	-	-	-		
82	SF4	5G	301	29	0,12,12	-	-	-		
73	HEM	1B	401	1	41,50,50	1.54	4 (9%)	45,82,82	1.50	7 (15%)
79	CUA	2C	301	-	0,1,1	-	-	-		·
76	HEA	8A	604	11	57,67,67	2.05	15 (26%)	61,103,103	2.42	25 (40%)
84	NDP	5P	401	-	45,52,52	2.26	5 (11%)	53,80,80	1.73	11 (20%)
85	COO	s	401	-	45,55,55	0.82	1 (2%)	55,81,81	4.26	10 (18%)
82	SF4	5B	502	24	0,12,12	-	-	-		·
82	SF4	5C	802	25	0,12,12	-	-	-		
76	HEA	7A	602	11	57,67,67	2.08	16 (28%)	61,103,103	2.42	22 (36%)
73	HEM	6B	402	1	41,50,50	1.45	3 (7%)	45,82,82	1.38	8 (17%)
82	SF4	С	802	25	0,12,12	-	-	-		·
73	HEM	1A	401	1	41,50,50	1.42	4 (9%)	45,82,82	1.76	10 (22%)

Mal	Turne	Chain	Dec	Tiple	Bond lengths		Bo	ond angl	es	
IVIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
74	HEC	$1\mathrm{F}$	501	3	32,50,50	2.09	3 (9%)	24,82,82	1.86	6 (25%)
73	HEM	6B	401	1	41,50,50	1.54	4 (9%)	45,82,82	1.50	8 (17%)
79	CUA	3C	301	-	0,1,1	-	-	-		
79	CUA	4C	301	-	0,1,1	-	-	-		
82	SF4	G	302	29	0,12,12	-	-	-		
83	8Q1	J	200	-	31,34,34	1.72	6 (19%)	40,43,43	1.55	<mark>5 (12%)</mark>
73	HEM	6A	401	1	41,50,50	1.40	3 (7%)	45,82,82	1.52	7 (15%)
74	HEC	6E	401	3	32,50,50	2.18	3 (9%)	24,82,82	1.80	5 (20%)
73	HEM	1A	402	1	41,50,50	1.40	3 (7%)	45,82,82	1.52	7 (15%)
76	HEA	7A	601	11	57,67,67	2.06	17 (29%)	61,103,103	2.43	24 (39%)
73	HEM	1B	402	1	41,50,50	1.44	3 (7%)	45,82,82	1.39	9 (20%)
83	8Q1	5k	200	-	31,34,34	1.75	6 (19%)	40,43,43	1.68	7 (17%)
79	CUA	8C	301	-	0,1,1	-	-	-		
76	HEA	3A	601	11	57,67,67	2.05	16 (28%)	61,103,103	2.42	25 (40%)
76	HEA	2A	601	11	57,67,67	2.09	16 (28%)	61,103,103	2.42	22 (36%)
80	FES	С	803	25	0,4,4	-	-	-		
76	HEA	4A	602	11	57,67,67	2.06	15 (26%)	61,103,103	2.45	23 (37%)
80	FES	5A	301	23	0,4,4	-	-	-		
73	HEM	6A	402	1	41,50,50	1.43	4 (9%)	45,82,82	1.76	11 (24%)
82	SF4	5C	803	25	0,12,12	-	-	-		
82	SF4	5F	201	28	0,12,12	-	-	-		
74	HEC	1E	401	3	32,50,50	2.18	3 (9%)	24,82,82	1.80	5 (20%)
80	FES	А	301	23	0,4,4	-	-	-		
76	HEA	9A	603	11	57,67,67	2.06	15 (26%)	61,103,103	2.46	23 (37%)
85	COO	5s	401	-	45,55,55	0.82	1 (2%)	55,81,81	4.25	10 (18%)
79	CUA	9C	301	-	0,1,1	-	-	-		<u> </u>
76	HEA	8A	601	11	57,67,67	2.07	15 (26%)	61,103,103	2.46	23 (37%)
82	SF4	В	501	24	0,12,12	-	-	-		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
80	FES	$5\mathrm{C}$	801	25	-	-	0/1/1/1
82	SF4	G	301	29	-	-	0/6/5/5
76	HEA	2A	602	11	-	7/32/76/76	-

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
82	SF4	F	201	28	-	-	0/6/5/5
84	NDP	Р	401	-	-	8/30/77/77	0/5/5/5
76	HEA	3A	604	11	-	4/32/76/76	-
81	FMN	В	502	-	-	5/18/18/18	0/3/3/3
82	SF4	5G	302	29	-	-	0/6/5/5
76	HEA	9A	602	11	-	7/32/76/76	-
81	FMN	5B	501	-	-	5/18/18/18	0/3/3/3
74	HEC	6F	501	3	-	0/10/54/54	-
83	8Q1	5J	200	-	-	7/41/41/41	-
76	HEA	4A	604	11	-	7/32/76/76	-
83	8Q1	k	200	-	-	21/41/41/41	_
82	SF4	С	801	25	-	-	0/6/5/5
82	SF4	5G	301	29	-	-	0/6/5/5
73	HEM	1B	401	1	-	3/12/54/54	-
76	HEA	8A	604	11	-	7/32/76/76	-
84	NDP	5P	401	-	-	8/30/77/77	0/5/5/5
85	COO	S	401	-	-	22/50/70/70	0/3/3/3
82	SF4	5B	502	24	-	-	0/6/5/5
82	SF4	5C	802	25	-	-	0/6/5/5
76	HEA	7A	602	11	-	5/32/76/76	-
73	HEM	6B	402	1	-	4/12/54/54	-
82	SF4	С	802	25	-	_	0/6/5/5
73	HEM	1A	401	1	-	3/12/54/54	-
74	HEC	1F	501	3	-	0/10/54/54	-
73	HEM	6B	401	1	-	3/12/54/54	-
83	8Q1	J	200	-	-	7/41/41/41	-
82	SF4	G	302	29	-	-	0/6/5/5
73	HEM	6A	401	1	-	4/12/54/54	-
74	HEC	6E	401	3	-	0/10/54/54	-
73	HEM	1A	402	1	-	4/12/54/54	-
76	HEA	7A	601	11	-	7/32/76/76	-
73	HEM	1B	402	1	-	4/12/54/54	_
83	8Q1	5k	200	-	-	21/41/41/41	-
76	HEA	3A	601	11	-	7/32/76/76	-
76	HEA	2A	601	11	-	5/32/76/76	-
80	FES	С	803	25	-	-	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
76	HEA	4A	602	11	-	4/32/76/76	-
80	FES	5A	301	23	-	-	0/1/1/1
73	HEM	6A	402	1	-	3/12/54/54	-
82	SF4	5C	803	25	-	-	0/6/5/5
82	SF4	5F	201	28	-	-	0/6/5/5
74	HEC	1E	401	3	-	0/10/54/54	-
80	FES	А	301	23	-	-	0/1/1/1
76	HEA	9A	603	11	-	4/32/76/76	-
85	COO	5s	401	-	-	22/50/70/70	0/3/3/3
76	HEA	8A	601	11	-	4/32/76/76	-
82	SF4	B	501	24	-	_	0/6/5/5

All (266) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
84	Р	401	NDP	P2B-O2B	12.50	1.82	1.59
84	5P	401	NDP	P2B-O2B	12.47	1.82	1.59
74	1E	401	HEC	C3C-C2C	-6.89	1.33	1.40
74	6E	401	HEC	C3C-C2C	-6.81	1.33	1.40
74	6F	501	HEC	C3C-C2C	-6.36	1.34	1.40
74	1F	501	HEC	C3C-C2C	-6.34	1.34	1.40
74	6E	401	HEC	C2B-C3B	-6.08	1.34	1.40
74	1E	401	HEC	C2B-C3B	-5.98	1.34	1.40
74	6F	501	HEC	C2B-C3B	-5.86	1.34	1.40
83	5k	200	8Q1	C34-N36	5.85	1.46	1.33
83	k	200	8Q1	C34-N36	5.81	1.46	1.33
74	1F	501	HEC	C2B-C3B	-5.81	1.34	1.40
76	7A	602	HEA	C3B-C2B	5.67	1.47	1.34
76	2A	601	HEA	C3B-C2B	5.67	1.47	1.34
83	J	200	8Q1	C34-N36	5.61	1.45	1.33
83	5 J	200	8Q1	C34-N36	5.60	1.45	1.33
76	3A	604	HEA	C3B-C2B	5.49	1.47	1.34
76	9A	603	HEA	C3B-C2B	5.46	1.47	1.34
76	8A	601	HEA	C3B-C2B	5.45	1.47	1.34
76	4A	602	HEA	C3B-C2B	5.41	1.46	1.34
76	2A	602	HEA	C3A-C2A	5.39	1.47	1.40
76	7A	601	HEA	C3A-C2A	5.36	1.47	1.40
83	5k	200	8Q1	C39-N41	5.33	1.45	1.33
76	3A	601	HEA	C3B-C2B	5.33	1.46	1.34
83	k	200	8Q1	C39-N41	5.32	1.45	1.33
83	5 J	200	8Q1	C39-N41	5.32	1.45	1.33

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
76	8A	604	HEA	C3B-C2B	5.32	1.46	1.34
76	9A	602	HEA	C3B-C2B	5.31	1.46	1.34
74	1E	401	HEC	C3D-C2D	5.31	1.53	1.37
74	6E	401	HEC	C3D-C2D	5.31	1.53	1.37
83	J	200	8Q1	C39-N41	5.30	1.45	1.33
76	4A	604	HEA	C3B-C2B	5.29	1.46	1.34
73	6B	401	HEM	C3C-C2C	-5.28	1.33	1.40
74	1F	501	HEC	C3D-C2D	5.25	1.53	1.37
74	6F	501	HEC	C3D-C2D	5.22	1.53	1.37
73	1B	401	HEM	C3C-C2C	-5.19	1.33	1.40
76	3A	604	HEA	C3C-C2C	5.17	1.47	1.40
76	7A	601	HEA	C3B-C2B	5.16	1.46	1.34
76	9A	603	HEA	C3C-C2C	5.14	1.47	1.40
76	2A	602	HEA	C3B-C2B	5.12	1.46	1.34
76	4A	602	HEA	C3C-C2C	5.11	1.47	1.40
76	8A	601	HEA	C3C-C2C	5.10	1.47	1.40
76	3A	601	HEA	C3C-C2C	4.99	1.47	1.40
76	2A	601	HEA	CHC-C4B	4.96	1.47	1.35
76	7A	602	HEA	CHC-C4B	4.96	1.47	1.35
76	8A	604	HEA	C3C-C2C	4.96	1.47	1.40
76	2A	601	HEA	C3D-C2D	4.94	1.47	1.36
76	9A	602	HEA	C3C-C2C	4.94	1.47	1.40
76	7A	602	HEA	C3D-C2D	4.94	1.47	1.36
76	8A	601	HEA	CHC-C4B	4.93	1.47	1.35
76	8A	604	HEA	C3A-C2A	4.92	1.47	1.40
76	7A	601	HEA	C3D-C2D	4.91	1.47	1.36
76	3A	604	HEA	CHC-C4B	4.91	1.47	1.35
76	9A	603	HEA	CHC-C4B	4.91	1.47	1.35
76	8A	604	HEA	CHC-C4B	4.90	1.47	1.35
76	4A	604	HEA	CHC-C4B	4.89	1.47	1.35
76	3A	601	HEA	CHC-C4B	4.89	1.47	1.35
76	4A	602	HEA	CHC-C4B	4.89	1.47	1.35
76	9A	602	HEA	CHC-C4B	4.88	1.47	1.35
76	2A	602	HEA	C3D-C2D	4.86	1.47	1.36
76	2A	602	HEA	CHD-C1D	4.83	1.47	1.35
76	7A	601	HEA	CHD-C1D	4.83	1.47	1.35
76	3A	601	HEA	C3A-C2A	4.83	1.47	1.40
76	8A	601	HEA	C3A-C2A	4.81	1.47	1.40
76	4A	604	HEA	C3C-C2C	4.81	1.47	1.40
76	8A	604	HEA	C3D-C2D	4.80	1.46	1.36
76	3A	604	HEA	C3A-C2A	4.80	1.47	1.40
76	$2\overline{A}$	601	HEA	C3A-C2A	4.80	1.47	1.40

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
76	2A	601	HEA	C3C-C2C	4.79	1.47	1.40
76	9A	602	HEA	C3A-C2A	4.79	1.47	1.40
76	7A	602	HEA	C3A-C2A	4.78	1.47	1.40
76	9A	602	HEA	C3D-C2D	4.77	1.46	1.36
76	3A	601	HEA	C3D-C2D	4.77	1.46	1.36
76	4A	604	HEA	C3D-C2D	4.76	1.46	1.36
76	4A	602	HEA	C3A-C2A	4.75	1.47	1.40
76	4A	604	HEA	C3A-C2A	4.75	1.47	1.40
76	9A	603	HEA	C3A-C2A	4.74	1.46	1.40
76	7A	601	HEA	C3C-C2C	4.74	1.46	1.40
76	4A	604	HEA	CHD-C1D	4.74	1.47	1.35
76	9A	603	HEA	C3D-C2D	4.73	1.46	1.36
76	2A	601	HEA	CHD-C1D	4.73	1.47	1.35
76	7A	602	HEA	C3C-C2C	4.72	1.46	1.40
76	3A	601	HEA	CHD-C1D	4.72	1.47	1.35
76	8A	604	HEA	CHD-C1D	4.72	1.47	1.35
76	7A	602	HEA	CHD-C1D	4.72	1.47	1.35
76	3A	604	HEA	C3D-C2D	4.70	1.46	1.36
76	7A	601	HEA	CHC-C4B	4.69	1.47	1.35
76	9A	602	HEA	CHD-C1D	4.69	1.47	1.35
76	2A	602	HEA	CHC-C4B	4.68	1.47	1.35
76	8A	601	HEA	CHD-C1D	4.68	1.47	1.35
76	4A	602	HEA	C3D-C2D	4.67	1.46	1.36
76	2A	602	HEA	C3C-C2C	4.67	1.46	1.40
76	8A	601	HEA	C3D-C2D	4.66	1.46	1.36
76	9A	603	HEA	CHD-C1D	4.65	1.46	1.35
76	3A	604	HEA	CHD-C1D	4.63	1.46	1.35
76	4A	602	HEA	CHD-C1D	4.63	1.46	1.35
84	$5\mathrm{P}$	401	NDP	PN-O5D	4.07	1.75	1.59
84	Р	401	NDP	PN-O5D	4.06	1.75	1.59
81	5B	501	FMN	C4A-N5	3.86	1.38	1.30
81	В	502	FMN	C4A-N5	3.86	1.38	1.30
73	1B	402	HEM	C3C-CAC	3.76	1.55	1.47
73	6B	402	HEM	C3C-CAC	3.74	1.55	1.47
73	1A	401	HEM	C3C-C2C	-3.71	1.35	1.40
73	6B	401	HEM	C3C-CAC	3.71	1.55	1.47
73	6A	401	HEM	C3C-CAC	3.70	1.55	1.47
73	1B	401	HEM	C3C-CAC	3.70	1.55	1.47
73	6A	402	HEM	C3C-CAC	$3.\overline{69}$	1.55	1.47
73	6B	402	HEM	C3C-C2C	-3.69	1.35	1.40
73	1A	402	HEM	C3C-CAC	$3.6\overline{8}$	1.55	1.47
73	1A	401	HEM	C3C-CAC	$3.\overline{67}$	1.55	1.47

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
73	6A	402	HEM	C3C-C2C	-3.66	1.35	1.40
73	1B	402	HEM	C3C-C2C	-3.63	1.35	1.40
73	1A	402	HEM	C3C-C2C	-3.57	1.35	1.40
73	6A	401	HEM	C3C-C2C	-3.54	1.35	1.40
73	1B	401	HEM	CAB-C3B	3.27	1.56	1.47
73	6B	401	HEM	CAB-C3B	3.23	1.56	1.47
76	7A	602	HEA	C4B-C3B	3.12	1.49	1.44
76	2A	602	HEA	FE-NB	3.10	2.12	1.96
76	7A	602	HEA	FE-ND	3.10	2.12	1.96
76	7A	601	HEA	FE-NB	3.10	2.12	1.96
73	6B	402	HEM	CAB-C3B	3.09	1.55	1.47
76	8A	601	HEA	C1D-ND	-3.09	1.35	1.40
76	2A	601	HEA	FE-ND	3.08	2.12	1.96
76	7A	602	HEA	C1D-ND	-3.07	1.35	1.40
76	2A	601	HEA	C1D-ND	-3.07	1.35	1.40
73	6A	402	HEM	CAB-C3B	3.06	1.55	1.47
76	4A	602	HEA	FE-ND	3.06	2.12	1.96
84	5P	401	NDP	O2B-C2B	-3.06	1.33	1.44
73	1B	402	HEM	CAB-C3B	3.06	1.55	1.47
76	2A	601	HEA	C4B-C3B	3.06	1.49	1.44
76	4A	602	HEA	C1D-ND	-3.06	1.35	1.40
84	Р	401	NDP	O2B-C2B	-3.06	1.33	1.44
76	9A	603	HEA	FE-ND	3.05	2.12	1.96
76	9A	603	HEA	C1D-ND	-3.05	1.35	1.40
76	7A	601	HEA	FE-ND	3.05	2.11	1.96
76	2A	602	HEA	FE-ND	3.04	2.11	1.96
76	8A	601	HEA	FE-ND	3.04	2.11	1.96
76	4A	604	HEA	FE-NB	3.03	2.11	1.96
76	3A	604	HEA	FE-ND	3.03	2.11	1.96
73	1A	401	HEM	CAB-C3B	3.02	1.55	1.47
76	3A	601	HEA	FE-NB	3.02	2.11	1.96
76	9A	602	HEA	FE-NB	3.01	2.11	1.96
76	8A	604	HEA	FE-NB	3.01	2.11	1.96
76	8A	601	HEA	C4B-C3B	3.00	1.49	1.44
73	1A	402	HEM	CAB-C3B	2.99	1.55	1.47
76	4A	602	HEA	C4B-C3B	2.99	1.49	1.44
73	6A	401	HEM	CAB-C3B	2.98	1.55	1.47
76	3A	604	HEA	C4B-C3B	2.98	1.49	1.44
76	3A	604	HEA	C1D-ND	-2.98	1.35	1.40
76	8A	601	HEA	FE-NB	2.98	2.11	1.96
76	2A	601	HEA	FE-NB	2.97	2.11	1.96
76	3A	604	HEA	FE-NB	2.97	2.11	1.96

001111	itaca jion	t proces	cae page				
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
76	7A	602	HEA	FE-NB	2.96	2.11	1.96
76	4A	602	HEA	FE-NB	2.96	2.11	1.96
76	3A	601	HEA	FE-ND	2.96	2.11	1.96
76	9A	603	HEA	C4B-C3B	2.96	1.49	1.44
76	9A	603	HEA	FE-NB	2.96	2.11	1.96
76	8A	604	HEA	FE-ND	2.95	2.11	1.96
76	9A	602	HEA	FE-ND	2.95	2.11	1.96
76	4A	604	HEA	FE-ND	2.95	2.11	1.96
76	9A	602	HEA	C4B-C3B	2.90	1.49	1.44
76	8A	604	HEA	C1D-ND	-2.88	1.35	1.40
76	9A	602	HEA	C1D-ND	-2.87	1.35	1.40
76	3A	601	HEA	C1D-ND	-2.86	1.35	1.40
76	4A	604	HEA	C4B-C3B	2.85	1.49	1.44
76	4A	604	HEA	C1D-ND	-2.83	1.35	1.40
76	8A	601	HEA	C4B-NB	-2.81	1.35	1.40
76	2A	602	HEA	C2A-C1A	2.81	1.48	1.42
76	3A	601	HEA	C4B-C3B	2.80	1.49	1.44
76	7A	601	HEA	C2A-C1A	2.80	1.48	1.42
76	8A	604	HEA	C4B-C3B	2.79	1.49	1.44
76	3A	604	HEA	C4B-NB	-2.78	1.35	1.40
76	7A	601	HEA	C1D-ND	-2.77	1.35	1.40
76	2A	602	HEA	C4B-NB	-2.74	1.35	1.40
76	4A	602	HEA	C4B-NB	-2.73	1.35	1.40
76	9A	603	HEA	C4B-NB	-2.73	1.35	1.40
76	2A	602	HEA	C1D-ND	-2.73	1.35	1.40
76	7A	601	HEA	C4B-NB	-2.73	1.35	1.40
76	8A	604	HEA	C4B-NB	-2.72	1.35	1.40
76	9A	602	HEA	C4B-NB	-2.71	1.35	1.40
76	3A	601	HEA	C4B-NB	-2.68	1.35	1.40
76	4A	604	HEA	C4B-NB	-2.68	1.35	1.40
76	2A	601	HEA	C2A-C1A	2.66	1.48	1.42
76	7A	602	HEA	C2A-C1A	2.59	1.48	1.42
83	5k	200	8Q1	C6-C1	2.53	1.53	1.50
83	k	200	8Q1	C1-S44	2.53	1.82	1.76
83	J	200	8Q1	C6-C1	2.52	1.53	1.50
83	5k	200	8Q1	C1-S44	2.52	1.82	1.76
76	9A	602	HEA	C2A-C1A	2.51	1.48	1.42
83	5J	200	8Q1	C6-C1	2.51	1.53	1.50
83	k	200	8Q1	C6-C1	2.51	1.53	1.50
83	J	200	8Q1	C1-S44	2.50	1.82	1.76
76	4A	604	HEA	C2A-C1A	2.50	1.48	1.42
76	8A	604	HEA	C2A-C1A	2.50	1.48	1.42

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
83	5J	200	8Q1	C1-S44	2.50	1.82	1.76
76	3A	601	HEA	C2A-C1A	2.49	1.48	1.42
76	7A	602	HEA	C4B-NB	-2.49	1.36	1.40
81	В	502	FMN	C10-N1	2.47	1.38	1.33
81	5B	501	FMN	C10-N1	2.46	1.38	1.33
85	s	401	COO	C5A-C4A	2.45	1.47	1.40
76	7A	602	HEA	C1C-CHC	2.44	1.47	1.41
76	2A	601	HEA	C4D-C3D	2.43	1.49	1.45
76	2A	601	HEA	C4B-NB	-2.41	1.36	1.40
85	5s	401	COO	C5A-C4A	2.41	1.47	1.40
76	2A	601	HEA	C1C-CHC	2.41	1.47	1.41
84	Р	401	NDP	C2A-N1A	2.40	1.38	1.33
76	2A	602	HEA	C4B-C3B	2.40	1.48	1.44
84	5P	401	NDP	C2A-N1A	2.40	1.38	1.33
76	4A	602	HEA	C2A-C1A	2.36	1.47	1.42
76	7A	602	HEA	C4D-C3D	2.36	1.49	1.45
76	8A	601	HEA	C1C-CHC	2.36	1.47	1.41
76	2A	602	HEA	C4C-CHD	2.36	1.47	1.41
76	7A	601	HEA	C4C-CHD	2.36	1.47	1.41
76	3A	604	HEA	C1C-CHC	2.35	1.47	1.41
76	3A	604	HEA	C2A-C1A	2.34	1.47	1.42
76	8A	601	HEA	C2A-C1A	2.33	1.47	1.42
76	9A	603	HEA	C2A-C1A	2.32	1.47	1.42
76	9A	603	HEA	C1C-CHC	2.31	1.47	1.41
76	4A	602	HEA	C1C-CHC	2.28	1.47	1.41
76	9A	603	HEA	C4D-C3D	2.28	1.49	1.45
76	7A	601	HEA	C4B-C3B	2.27	1.48	1.44
76	3A	604	HEA	C4D-C3D	2.24	1.48	1.45
76	8A	601	HEA	C4D-C3D	2.24	1.48	1.45
76	4A	602	HEA	C4D-C3D	2.22	1.48	1.45
76	9A	603	HEA	C4C-CHD	2.21	1.47	1.41
76	3A	604	HEA	C4C-CHD	2.21	1.47	1.41
76	9A	602	HEA	C4C-CHD	2.19	1.47	1.41
76	4A	604	HEA	C4C-CHD	2.19	1.47	1.41
76	4A	602	HEA	C4C-CHD	2.19	1.47	1.41
83	k	200	8Q1	O40-C39	-2.18	1.18	1.23
76	8A	601	HEA	C4C-CHD	2.18	1.47	1.41
76	8A	604	HEA	C1D-C2D	2.18	1.48	1.44
76	$9\overline{A}$	602	HEA	C1C-CHC	2.17	1.47	1.41
76	3A	601	HEA	C1D-C2D	2.17	1.48	1.44
76	7A	602	HEA	C4C-CHD	2.17	1.47	1.41
76	2A	601	HEA	C4C-CHD	2.17	1.47	1.41

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
76	2A	602	HEA	C1D-C2D	2.16	1.48	1.44
76	4A	604	HEA	C1C-CHC	2.16	1.47	1.41
76	4A	604	HEA	C1D-C2D	2.15	1.48	1.44
83	5k	200	8Q1	O40-C39	-2.14	1.18	1.23
76	3A	601	HEA	C4C-CHD	2.13	1.46	1.41
76	8A	604	HEA	C4C-CHD	2.13	1.46	1.41
76	8A	604	HEA	C1C-CHC	2.13	1.46	1.41
76	7A	601	HEA	C1D-C2D	2.12	1.48	1.44
76	3A	601	HEA	C1C-CHC	2.12	1.46	1.41
83	5J	200	8Q1	O40-C39	-2.11	1.19	1.23
83	J	200	8Q1	O40-C39	-2.11	1.19	1.23
73	6B	401	HEM	CAA-C2A	2.10	1.55	1.52
73	1B	401	HEM	CAA-C2A	2.10	1.55	1.52
73	6A	402	HEM	CAA-C2A	2.10	1.55	1.52
76	9A	602	HEA	C1D-C2D	2.09	1.48	1.44
76	7A	601	HEA	C1C-CHC	2.09	1.46	1.41
76	4A	604	HEA	C4D-ND	-2.08	1.34	1.38
76	7A	601	HEA	CHB-C1B	2.06	1.47	1.41
76	2A	602	HEA	C1C-CHC	2.06	1.46	1.41
76	2A	602	HEA	C1B-C2B	2.05	1.48	1.44
76	3A	601	HEA	C4D-ND	-2.05	1.34	1.38
76	7A	601	HEA	C1B-C2B	2.04	1.48	1.44
76	2A	601	HEA	C1D-C2D	2.03	1.48	1.44
83	5k	200	8Q1	O35-C34	-2.03	1.19	1.23
76	7A	602	HEA	C1D-C2D	2.03	1.48	1.44
76	2A	602	HEA	CHB-C1B	2.03	1.46	1.41
73	1A	401	HEM	CAA-C2A	2.03	1.55	1.52
84	5P	401	NDP	O5D-C5D	-2.02	1.37	1.44
76	4A	604	HEA	C1B-NB	-2.01	1.34	1.38
83	J	200	8Q1	O35-C34	-2.00	1.19	1.23

Continued from previous page...

All (454) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
85	s	401	COO	C15-C11-C12	-19.15	77.00	108.23
85	5s	401	COO	C15-C11-C12	-19.15	77.00	108.23
85	S	401	COO	C15-C11-C13	-16.74	79.80	108.82
85	5s	401	COO	C15-C11-C13	-16.71	79.86	108.82
85	S	401	COO	C15-C11-C14	-15.20	78.19	109.17
85	5s	401	COO	C15-C11-C14	-15.19	78.20	109.17
76	3A	604	HEA	C3D-C4D-ND	6.91	117.05	110.36
84	Р	401	NDP	PN-O3-PA	-6.91	109.11	132.83

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
84	$5\mathrm{P}$	401	NDP	PN-O3-PA	-6.89	109.18	132.83
76	8A	601	HEA	C3D-C4D-ND	6.86	117.00	110.36
76	9A	603	HEA	C3D-C4D-ND	6.83	116.97	110.36
76	2A	602	HEA	C3D-C4D-ND	6.79	116.93	110.36
76	4A	602	HEA	C3D-C4D-ND	6.79	116.93	110.36
76	7A	601	HEA	C3D-C4D-ND	6.74	116.88	110.36
76	2A	601	HEA	C3D-C4D-ND	6.72	116.86	110.36
76	7A	602	HEA	C3D-C4D-ND	6.71	116.86	110.36
76	9A	602	HEA	C3D-C4D-ND	6.15	116.32	110.36
76	8A	604	HEA	C3D-C4D-ND	6.13	116.29	110.36
76	3A	601	HEA	C3D-C4D-ND	6.13	116.29	110.36
76	4A	604	HEA	C3D-C4D-ND	6.12	116.29	110.36
83	J	200	8Q1	C6-C1-S44	5.89	120.32	113.46
83	k	200	8Q1	C6-C1-S44	5.83	120.24	113.46
83	5J	200	8Q1	C6-C1-S44	5.81	120.22	113.46
83	5k	200	8Q1	C6-C1-S44	5.79	120.20	113.46
76	4A	602	HEA	C2B-C1B-NB	5.77	116.79	109.88
76	3A	604	HEA	C2B-C1B-NB	5.73	116.74	109.88
76	9A	603	HEA	C2B-C1B-NB	5.73	116.74	109.88
76	8A	604	HEA	C2D-C1D-ND	5.71	116.60	109.84
76	9A	602	HEA	C2D-C1D-ND	5.69	116.58	109.84
76	4A	604	HEA	C2D-C1D-ND	5.67	116.56	109.84
76	3A	601	HEA	C2D-C1D-ND	5.67	116.56	109.84
76	8A	601	HEA	C2B-C1B-NB	5.66	116.66	109.88
76	2A	601	HEA	C2B-C1B-NB	5.65	116.64	109.88
76	7A	602	HEA	C2D-C1D-ND	5.64	116.53	109.84
76	7A	602	HEA	C2B-C1B-NB	5.64	116.64	109.88
76	2A	601	HEA	C2D-C1D-ND	5.64	116.52	109.84
76	7A	601	HEA	C3B-C4B-NB	5.63	116.51	109.84
76	2A	602	HEA	C3B-C4B-NB	5.57	116.44	109.84
76	3A	601	HEA	C2B-C1B-NB	5.49	116.46	109.88
76	4A	604	HEA	C2B-C1B-NB	5.48	116.45	109.88
76	9A	602	HEA	C2B-C1B-NB	5.45	116.41	109.88
76	8A	604	HEA	C2B-C1B-NB	5.44	116.39	109.88
76	9A	603	HEA	C2D-C1D-ND	5.44	116.28	109.84
76	8A	601	HEA	C2D-C1D-ND	5.41	116.24	109.84
76	4A	602	HEA	C2D-C1D-ND	5.37	116.20	109.84
76	3A	604	HEA	C2D-C1D-ND	5.36	116.19	109.84
76	7A	601	HEA	C2D-C1D-ND	5.28	116.09	109.84
76	2A	602	HEA	C2D-C1D-ND	5.26	116.08	109.84
76	8A	604	HEA	C1D-C2D-C3D	-5.14	101.55	106.96
76	4A	604	HEA	C1D-C2D-C3D	-5.12	101.57	106.96

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
76	3A	601	HEA	C1D-C2D-C3D	-5.12	101.57	106.96
76	8A	604	HEA	C3B-C4B-NB	5.09	115.86	109.84
76	3A	601	HEA	C3B-C4B-NB	5.06	115.84	109.84
76	9A	602	HEA	C3B-C4B-NB	5.03	115.81	109.84
76	9A	602	HEA	C1D-C2D-C3D	-5.02	101.68	106.96
76	4A	604	HEA	C3B-C4B-NB	5.00	115.76	109.84
76	7A	601	HEA	C2B-C1B-NB	4.99	115.86	109.88
76	2A	602	HEA	C2B-C1B-NB	4.99	115.85	109.88
76	7A	602	HEA	C3B-C4B-NB	4.98	115.74	109.84
76	2A	601	HEA	C3B-C4B-NB	4.97	115.72	109.84
85	5s	401	COO	C14-C11-C12	4.95	116.30	108.23
85	s	401	COO	C14-C11-C12	4.93	116.28	108.23
76	3A	604	HEA	C3B-C4B-NB	4.88	115.62	109.84
76	8A	601	HEA	C3B-C4B-NB	4.84	115.58	109.84
76	9A	603	HEA	C3B-C4B-NB	4.82	115.55	109.84
76	4A	602	HEA	C3B-C4B-NB	4.79	115.51	109.84
76	2A	602	HEA	C13-C12-C11	-4.45	107.66	114.35
73	1A	401	HEM	C3B-C2B-C1B	4.45	109.78	106.49
73	6A	402	HEM	C3B-C2B-C1B	4.45	109.78	106.49
76	7A	601	HEA	C13-C12-C11	-4.40	107.73	114.35
76	2A	601	HEA	C3C-C4C-NC	4.26	114.72	109.21
76	9A	602	HEA	C3C-C4C-NC	4.21	114.66	109.21
74	1F	501	HEC	CMB-C2B-C1B	-4.21	122.00	128.46
74	6F	501	HEC	CMB-C2B-C1B	-4.20	122.00	128.46
76	4A	604	HEA	C3C-C4C-NC	4.20	114.64	109.21
76	7A	602	HEA	C3C-C4C-NC	4.19	114.62	109.21
76	8A	604	HEA	C3C-C4C-NC	4.14	114.56	109.21
76	3A	604	HEA	C3C-C4C-NC	4.13	114.55	109.21
76	3A	601	HEA	C3C-C4C-NC	4.13	114.54	109.21
76	9A	603	HEA	C3C-C4C-NC	4.12	114.54	109.21
76	8A	601	HEA	C3C-C4C-NC	4.11	114.53	109.21
76	2A	602	HEA	C1D-C2D-C3D	-4.10	102.64	106.96
76	7A	601	HEA	C1D-C2D-C3D	-4.09	102.65	106.96
85	S	401	COO	C14-C11-C13	4.07	115.88	108.82
85	5s	401	COO	C14-C11-C13	4.07	115.88	108.82
76	4A	602	HEA	C3C-C4C-NC	4.06	114.46	109.21
73	1A	401	HEM	CMB-C2B-C1B	-4.05	118.87	125.04
76	9A	603	HEA	CBA-CAA-C2A	-4.04	105.80	112.60
76	8A	601	HEA	CBA-CAA-C2A	-4.03	105.82	112.60
76	3A	604	HEA	CBA-CAA-C2A	-4.02	105.82	112.60
76	4A	602	HEA	CBA-CAA-C2A	-4.02	105.83	112.60
73	6A	402	HEM	CMB-C2B-C1B	-4.02	118.92	125.04

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
76	4A	602	HEA	CMC-C2C-C3C	4.00	132.17	124.68
76	9A	603	HEA	CMC-C2C-C3C	3.99	132.14	124.68
76	8A	601	HEA	CMC-C2C-C3C	3.98	132.13	124.68
76	3A	604	HEA	CMC-C2C-C3C	3.97	132.11	124.68
73	1A	402	HEM	CMC-C2C-C3C	3.95	132.07	124.68
73	6A	401	HEM	CMC-C2C-C3C	3.94	132.06	124.68
76	4A	604	HEA	CMC-C2C-C3C	3.90	131.98	124.68
74	6E	401	HEC	CMB-C2B-C1B	-3.89	122.48	128.46
76	7A	601	HEA	CMC-C2C-C3C	3.89	131.96	124.68
76	8A	604	HEA	CMC-C2C-C3C	3.87	131.92	124.68
74	1E	401	HEC	CMB-C2B-C1B	-3.87	122.52	128.46
76	2A	602	HEA	CMC-C2C-C3C	3.87	131.91	124.68
76	9A	602	HEA	CMC-C2C-C3C	3.86	131.90	124.68
76	3A	601	HEA	CMC-C2C-C3C	3.86	131.89	124.68
76	7A	601	HEA	C3C-C4C-NC	3.85	114.18	109.21
76	7A	602	HEA	C1D-C2D-C3D	-3.85	102.91	106.96
83	5k	200	8Q1	C32-C34-N36	3.83	124.21	116.58
83	k	200	8Q1	C32-C34-N36	3.83	124.20	116.58
76	2A	602	HEA	C3C-C4C-NC	3.82	114.14	109.21
76	2A	601	HEA	C1D-C2D-C3D	-3.80	102.96	106.96
74	6E	401	HEC	CMC-C2C-C1C	-3.76	122.68	128.46
74	1E	401	HEC	CMC-C2C-C1C	-3.74	122.71	128.46
76	3A	604	HEA	CHA-C4D-ND	-3.72	120.39	124.43
76	8A	601	HEA	CHA-C4D-ND	-3.72	120.39	124.43
73	1A	402	HEM	CMA-C3A-C4A	-3.71	122.76	128.46
76	9A	603	HEA	C27-C19-C20	3.71	121.51	115.27
76	3A	604	HEA	C4D-C3D-C2D	-3.69	101.51	106.90
73	6A	401	HEM	CMA-C3A-C4A	-3.69	122.79	128.46
76	8A	601	HEA	C4D-C3D-C2D	-3.69	101.52	106.90
76	9A	603	HEA	C1D-C2D-C3D	-3.69	103.08	106.96
76	8A	604	HEA	CBA-CAA-C2A	-3.68	106.40	112.60
76	4A	602	HEA	CHA-C4D-ND	-3.68	120.43	124.43
76	9A	603	HEA	C4D-C3D-C2D	-3.68	101.54	106.90
76	9A	603	HEA	CHA-C4D-ND	-3.67	120.44	124.43
76	3A	601	HEA	CBA-CAA-C2A	-3.67	106.43	112.60
76	3A	604	HEA	C27-C19-C20	3.66	121.43	115.27
76	2A	601	HEA	C4D-C3D-C2D	-3.65	101.57	106.90
76	4A	602	HEA	C1D-C2D-C3D	-3.65	103.12	106.96
76	8A	601	HEA	C27-C19-C20	3.65	121.40	115.27
76	8A	601	HEA	C1D-C2D-C3D	-3.65	103.12	106.96
76	4A	602	HEA	C4D-C3D-C2D	-3.64	101.59	106.90
76	4A	602	HEA	C27-C19-C20	3.64	121.40	115.27

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
76	3A	604	HEA	C1D-C2D-C3D	-3.64	103.13	106.96
76	4A	604	HEA	CBA-CAA-C2A	-3.63	106.48	112.60
76	7A	602	HEA	C4D-C3D-C2D	-3.62	101.62	106.90
76	9A	602	HEA	CBA-CAA-C2A	-3.61	106.52	112.60
76	4A	602	HEA	C1B-C2B-C3B	-3.59	102.50	106.80
83	J	200	8Q1	O4-C1-C6	-3.59	119.75	123.99
76	3A	604	HEA	C1B-C2B-C3B	-3.55	102.55	106.80
76	4A	604	HEA	CAD-CBD-CGD	-3.55	105.97	113.60
76	3A	601	HEA	CAD-CBD-CGD	-3.54	105.99	113.60
76	9A	602	HEA	CAD-CBD-CGD	-3.54	105.99	113.60
76	8A	604	HEA	CAD-CBD-CGD	-3.53	106.00	113.60
74	6E	401	HEC	CMB-C2B-C3B	3.52	129.96	125.82
76	8A	601	HEA	C1B-C2B-C3B	-3.52	102.59	106.80
76	9A	603	HEA	C1B-C2B-C3B	-3.52	102.59	106.80
83	5J	200	8Q1	O4-C1-C6	-3.51	119.85	123.99
74	1E	401	HEC	CMB-C2B-C3B	3.49	129.92	125.82
73	1B	402	HEM	CMC-C2C-C3C	3.49	131.20	124.68
83	k	200	8Q1	O4-C1-C6	-3.48	119.88	123.99
76	7A	602	HEA	CHA-C4D-ND	-3.48	120.65	124.43
76	2A	601	HEA	CHA-C4D-ND	-3.46	120.67	124.43
73	6B	402	HEM	CMC-C2C-C3C	3.45	131.14	124.68
76	7A	602	HEA	CBA-CAA-C2A	-3.45	106.79	112.60
76	3A	604	HEA	CAD-C3D-C4D	3.45	130.68	124.66
83	5k	200	8Q1	O4-C1-C6	-3.44	119.92	123.99
76	2A	601	HEA	CBA-CAA-C2A	-3.44	106.80	112.60
76	8A	601	HEA	CAD-C3D-C4D	3.43	130.66	124.66
76	4A	602	HEA	CAD-C3D-C4D	3.40	130.60	124.66
76	9A	603	HEA	CAD-C3D-C4D	3.39	130.58	124.66
76	7A	601	HEA	C4D-C3D-C2D	-3.35	102.02	106.90
73	1A	401	HEM	C4C-CHD-C1D	3.34	126.97	122.56
76	2A	601	HEA	C1B-C2B-C3B	-3.33	102.82	106.80
76	2A	602	HEA	C4D-C3D-C2D	-3.33	102.05	106.90
76	7A	602	HEA	C1B-C2B-C3B	-3.33	102.82	106.80
84	5P	401	NDP	O2B-P2B-O1X	-3.32	96.57	109.39
76	4A	604	HEA	C1B-C2B-C3B	-3.32	102.83	106.80
73	6A	402	HEM	C4C-CHD-C1D	3.32	126.94	122.56
84	Р	401	NDP	O2B-P2B-O1X	-3.32	96.59	109.39
76	3A	601	HEA	C1B-C2B-C3B	-3.31	102.84	106.80
73	1B	401	HEM	C4C-CHD-C1D	3.29	$126.9\overline{0}$	122.56
76	8A	$60\overline{4}$	HEA	C1B-C2B-C3B	-3.29	102.86	106.80
$\overline{76}$	$9\overline{\mathrm{A}}$	602	HEA	C1B-C2B-C3B	-3.28	102.88	106.80
73	6B	401	HEM	C4C-CHD-C1D	3.28	126.89	122.56

\mathbf{Mol}	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
76	7A	601	HEA	CMB-C2B-C1B	3.27	130.02	125.04
76	2A	602	HEA	CMB-C2B-C1B	3.25	129.98	125.04
76	8A	604	HEA	C13-C12-C11	-3.24	109.47	114.35
76	3A	601	HEA	C13-C12-C11	-3.24	109.49	114.35
76	9A	602	HEA	C13-C12-C11	-3.21	109.53	114.35
73	1A	401	HEM	CHB-C1B-NB	3.19	128.32	124.38
73	6A	402	HEM	CHB-C1B-NB	3.18	128.31	124.38
76	4A	604	HEA	C13-C12-C11	-3.17	109.59	114.35
74	6F	501	HEC	CMC-C2C-C1C	-3.17	123.59	128.46
74	1F	501	HEC	CMC-C2C-C1C	-3.14	123.63	128.46
73	1B	401	HEM	C3B-C2B-C1B	3.14	108.82	106.49
73	6B	401	HEM	C3B-C2B-C1B	3.14	108.81	106.49
76	7A	602	HEA	C4B-C3B-C2B	-3.14	102.05	107.41
85	5s	401	COO	P1A-O3A-P2A	-3.14	122.06	132.83
73	6A	402	HEM	CMC-C2C-C3C	3.14	130.54	124.68
85	s	401	COO	N3A-C2A-N1A	-3.13	123.78	128.68
73	1A	401	HEM	CMC-C2C-C3C	3.13	130.53	124.68
85	s	401	COO	P1A-O3A-P2A	-3.13	122.09	132.83
85	5s	401	COO	N3A-C2A-N1A	-3.13	123.79	128.68
76	2A	601	HEA	C4B-C3B-C2B	-3.12	102.09	107.41
76	2A	602	HEA	C4B-C3B-C2B	-3.11	102.10	107.41
76	7A	601	HEA	C1B-C2B-C3B	-3.10	103.09	106.80
76	7A	601	HEA	C4B-C3B-C2B	-3.08	102.14	107.41
76	3A	601	HEA	C4B-C3B-C2B	-3.06	102.19	107.41
76	2A	602	HEA	C1B-C2B-C3B	-3.06	103.14	106.80
76	8A	604	HEA	C4B-C3B-C2B	-3.06	102.19	107.41
76	9A	602	HEA	C4B-C3B-C2B	-3.05	102.20	107.41
76	4A	604	HEA	C4B-C3B-C2B	-3.04	102.22	107.41
81	5B	501	FMN	C4-N3-C2	-2.99	120.12	125.64
76	2A	602	HEA	CAD-CBD-CGD	-2.98	107.19	113.60
84	$5\mathrm{P}$	401	NDP	PA-O5B-C5B	-2.98	104.20	121.68
74	$1\mathrm{F}$	501	HEC	C1D-C2D-C3D	-2.98	104.92	107.00
74	6F	501	HEC	C1D-C2D-C3D	-2.97	104.93	107.00
84	Р	401	NDP	PA-O5B-C5B	-2.97	104.26	121.68
76	7A	602	HEA	C27-C19-C20	2.97	120.27	115.27
76	3A	604	HEA	C4B-C3B-C2B	-2.97	102.34	107.41
76	8A	601	HEA	C4B-C3B-C2B	-2.96	102.35	107.41
73	1A	402	HEM	C4D-ND-C1D	2.96	108.13	105.07
76	2A	601	HEA	CAD-C3D-C4D	2.96	129.83	124.66
76	7A	602	HEA	CAD-C3D-C4D	2.96	129.83	124.66
76	2A	601	HEA	C27-C19-C20	2.95	120.24	115.27
73	6A	401	HEM	C4D-ND-C1D	2.95	108.12	105.07

\mathbf{Mol}	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
73	1B	401	HEM	C4D-ND-C1D	2.95	108.12	105.07
73	6B	401	HEM	C4D-ND-C1D	2.95	108.12	105.07
76	7A	601	HEA	CAD-CBD-CGD	-2.94	107.27	113.60
81	В	502	FMN	C4-N3-C2	-2.94	120.21	125.64
85	5s	401	COO	C4A-C5A-N7A	-2.93	106.34	109.40
76	9A	603	HEA	C4B-C3B-C2B	-2.93	102.41	107.41
85	s	401	COO	C3X-C2X-C1X	2.92	106.36	99.89
84	Р	401	NDP	PN-O5D-C5D	-2.92	104.58	121.68
84	5P	401	NDP	PN-O5D-C5D	-2.91	104.59	121.68
85	5s	401	COO	C3X-C2X-C1X	2.91	106.33	99.89
76	2A	601	HEA	CMC-C2C-C3C	2.90	130.11	124.68
85	s	401	COO	C4A-C5A-N7A	-2.90	106.38	109.40
76	7A	602	HEA	C1D-ND-C4D	-2.90	102.08	105.07
76	2A	601	HEA	C1D-ND-C4D	-2.89	102.08	105.07
76	7A	602	HEA	CMC-C2C-C3C	2.89	130.08	124.68
76	4A	602	HEA	C4B-C3B-C2B	-2.89	102.48	107.41
76	3A	604	HEA	C1D-ND-C4D	-2.87	102.11	105.07
76	8A	601	HEA	C1D-ND-C4D	-2.87	102.11	105.07
85	5s	401	COO	C10-C9-C8	-2.87	119.68	125.34
73	6A	402	HEM	C4D-ND-C1D	2.86	108.03	105.07
85	S	401	COO	C10-C9-C8	-2.86	119.70	125.34
76	9A	603	HEA	C1D-ND-C4D	-2.85	102.12	105.07
73	1A	401	HEM	C4D-ND-C1D	2.85	108.02	105.07
76	2A	602	HEA	C13-C14-C15	-2.82	120.86	127.66
76	4A	602	HEA	C1D-ND-C4D	-2.81	102.17	105.07
76	7A	601	HEA	C13-C14-C15	-2.81	120.90	127.66
76	7A	602	HEA	CAD-CBD-CGD	-2.80	107.59	113.60
76	2A	601	HEA	CAD-CBD-CGD	-2.79	107.60	113.60
76	3A	604	HEA	CHB-C1B-C2B	-2.77	120.66	124.98
73	1B	402	HEM	C4D-ND-C1D	2.75	107.92	105.07
76	4A	602	HEA	CHB-C1B-C2B	-2.75	120.68	124.98
76	8A	604	HEA	CMD-C2D-C1D	2.74	129.21	125.04
76	8A	604	HEA	C27-C19-C20	2.74	119.87	115.27
74	1F	501	HEC	CMB-C2B-C3B	2.73	129.03	125.82
74	6F	501	HEC	CAA-CBA-CGA	-2.73	106.11	113.76
74	1F	501	HEC	CAA-CBA-CGA	-2.72	106.13	113.76
74	6F	501	HEC	CMB-C2B-C3B	2.72	129.01	125.82
76	8A	601	HEA	CHB-C1B-C2B	-2.71	120.74	124.98
73	6B	402	HEM	C4D-ND-C1D	2.71	107.87	105.07
76	3A	601	HEA	CMD-C2D-C1D	2.71	129.16	125.04
73	1B	401	HEM	C4B-CHC-C1C	2.71	126.13	122.56
76	3A	601	HEA	C27-C19-C20	2.71	119.82	115.27

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
76	9A	602	HEA	C27-C19-C20	2.70	119.82	115.27
76	8A	601	HEA	CAD-CBD-CGD	-2.70	107.80	113.60
76	9A	603	HEA	CHB-C1B-C2B	-2.70	120.77	124.98
76	4A	604	HEA	CMD-C2D-C1D	2.69	129.14	125.04
76	4A	604	HEA	CHA-C4D-C3D	-2.69	120.88	124.84
73	6B	401	HEM	C4B-CHC-C1C	2.69	126.10	122.56
76	2A	602	HEA	C1D-ND-C4D	-2.68	102.30	105.07
76	4A	604	HEA	C27-C19-C20	2.68	119.78	115.27
76	8A	601	HEA	C13-C14-C15	-2.68	121.20	127.66
76	3A	601	HEA	CHA-C4D-C3D	-2.68	120.90	124.84
76	9A	602	HEA	CMD-C2D-C1D	2.67	129.11	125.04
76	7A	602	HEA	C13-C14-C15	-2.67	121.24	127.66
76	3A	604	HEA	CAD-CBD-CGD	-2.67	107.87	113.60
76	7A	602	HEA	C26-C15-C16	2.66	119.75	115.27
76	3A	604	HEA	C13-C14-C15	-2.66	121.25	127.66
76	4A	602	HEA	CAD-CBD-CGD	-2.66	107.88	113.60
76	9A	603	HEA	C13-C14-C15	-2.66	121.26	127.66
76	9A	603	HEA	CAD-CBD-CGD	-2.65	107.89	113.60
76	4A	602	HEA	C13-C14-C15	-2.65	121.27	127.66
76	2A	601	HEA	C26-C15-C16	2.64	119.72	115.27
76	9A	602	HEA	CHA-C4D-C3D	-2.64	120.95	124.84
76	9A	602	HEA	C1D-ND-C4D	-2.64	102.34	105.07
76	8A	604	HEA	CHA-C4D-C3D	-2.64	120.95	124.84
76	2A	601	HEA	C13-C14-C15	-2.64	121.31	127.66
76	7A	601	HEA	C1D-ND-C4D	-2.64	102.35	105.07
76	9A	602	HEA	C4D-C3D-C2D	-2.63	103.06	106.90
76	2A	602	HEA	C27-C19-C20	2.63	119.69	115.27
83	k	200	8Q1	C43-S44-C1	2.62	110.04	101.87
76	7A	601	HEA	C27-C19-C20	2.61	119.66	115.27
76	8A	604	HEA	C1D-ND-C4D	-2.61	102.38	105.07
81	5B	501	FMN	C4A-C4-N3	2.61	119.81	113.19
83	5k	200	8Q1	C43-S44-C1	2.60	109.96	101.87
74	1E	401	HEC	C1D-C2D-C3D	-2.59	105.19	107.00
76	7A	601	HEA	C4B-NB-C1B	-2.59	102.40	105.07
81	В	502	FMN	C4A-C4-N3	2.58	119.75	113.19
76	4A	604	HEA	C1D-ND-C4D	-2.58	102.41	105.07
76	3A	601	HEA	C1D-ND-C4D	-2.58	102.41	105.07
76	9A	603	HEA	CMD-C2D-C1D	2.57	128.95	125.04
76	3A	601	HEA	C4D-C3D-C2D	-2.56	103.16	106.90
76	4A	604	HEA	C4D-C3D-C2D	-2.56	103.16	106.90
76	8A	601	HEA	CMD-C2D-C1D	2.56	128.94	125.04
74	6E	401	HEC	C1D-C2D-C3D	-2.56	105.21	107.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
76	8A	604	HEA	C4D-C3D-C2D	-2.56	103.17	106.90
84	Р	401	NDP	O3X-P2B-O2X	2.55	117.37	107.64
84	5P	401	NDP	O3X-P2B-O2X	2.54	117.36	107.64
83	J	200	8Q1	C43-S44-C1	2.54	109.78	101.87
76	2A	602	HEA	C4B-NB-C1B	-2.53	102.45	105.07
76	4A	602	HEA	CMD-C2D-C1D	2.53	128.89	125.04
76	3A	604	HEA	CMD-C2D-C1D	2.53	128.89	125.04
83	5J	200	8Q1	C43-S44-C1	2.53	109.73	101.87
76	2A	601	HEA	CHB-C1B-C2B	-2.50	121.08	124.98
76	7A	602	HEA	CHB-C1B-C2B	-2.49	121.08	124.98
73	6A	402	HEM	CMA-C3A-C4A	-2.48	124.64	128.46
76	3A	601	HEA	C26-C15-C16	2.48	119.44	115.27
81	В	502	FMN	C4A-C10-N10	2.47	120.09	116.48
81	5B	501	FMN	C4A-C10-N10	2.46	120.08	116.48
76	9A	602	HEA	C26-C15-C16	2.46	119.42	115.27
76	7A	601	HEA	CBA-CAA-C2A	-2.46	108.46	112.60
76	8A	604	HEA	C13-C14-C15	-2.46	121.75	127.66
76	4A	604	HEA	C13-C14-C15	-2.46	121.75	127.66
81	5B	501	FMN	O4-C4-C4A	-2.45	120.10	126.60
76	2A	602	HEA	CHA-C4D-C3D	-2.45	121.24	124.84
76	8A	604	HEA	C26-C15-C16	2.44	119.38	115.27
76	9A	602	HEA	C13-C14-C15	-2.44	121.79	127.66
76	7A	601	HEA	CHA-C4D-C3D	-2.44	121.26	124.84
81	В	502	FMN	O4-C4-C4A	-2.43	120.15	126.60
73	6A	402	HEM	CHD-C1D-ND	2.43	127.07	124.43
73	1A	401	HEM	CMA-C3A-C4A	-2.43	124.73	128.46
76	4A	604	HEA	C26-C15-C16	2.43	119.36	115.27
76	2A	602	HEA	CBA-CAA-C2A	-2.43	108.52	112.60
76	3A	601	HEA	C13-C14-C15	-2.42	121.82	127.66
83	5k	200	8Q1	O35-C34-N36	-2.42	117.80	122.99
73	1A	401	HEM	CHD-C1D-ND	2.42	127.06	124.43
76	2A	602	HEA	CHB-C1B-NB	-2.42	121.80	124.43
83	k	200	8Q1	O35-C34-N36	-2.40	117.83	122.99
84	5P	401	NDP	C2A-N1A-C6A	-2.40	114.65	118.75
76	2A	602	HEA	CHA-C4D-ND	-2.40	121.83	124.43
76	7A	601	HEA	CHB-C1B-NB	-2.38	121.84	124.43
73	6B	402	HEM	C1B-NB-C4B	2.38	107.53	105.07
73	1B	402	HEM	C3D-C4D-ND	-2.38	107.52	110.17
84	Р	401	NDP	C2A-N1A-C6A	-2.38	114.69	118.75
73	6A	402	HEM	C1B-NB-C4B	2.37	107.53	105.07
76	3A	601	HEA	CMB-C2B-C1B	2.37	128.65	125.04
76	4A	604	HEA	CMB-C2B-C1B	2.37	128.64	125.04

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
76	7A	601	HEA	CHA-C4D-ND	-2.36	121.86	124.43
73	1B	401	HEM	CMA-C3A-C4A	-2.36	124.84	128.46
73	1A	401	HEM	C1B-NB-C4B	2.36	107.51	105.07
73	1B	402	HEM	C1B-NB-C4B	2.36	107.51	105.07
76	8A	604	HEA	CMB-C2B-C1B	2.36	128.63	125.04
73	6B	402	HEM	C3D-C4D-ND	-2.35	107.55	110.17
73	6B	401	HEM	CMA-C3A-C4A	-2.35	124.85	128.46
76	7A	602	HEA	C25-C23-C24	2.34	119.77	114.60
76	9A	602	HEA	CMB-C2B-C1B	2.33	128.59	125.04
73	6A	401	HEM	C3D-C4D-ND	-2.33	107.57	110.17
76	2A	601	HEA	C25-C23-C24	2.33	119.74	114.60
76	4A	604	HEA	CHB-C1B-C2B	-2.33	121.34	124.98
76	3A	601	HEA	C4B-NB-C1B	-2.32	102.67	105.07
73	1A	402	HEM	C3D-C4D-ND	-2.32	107.58	110.17
76	8A	604	HEA	CHB-C1B-C2B	-2.32	121.36	124.98
84	5P	401	NDP	O5D-PN-O1N	-2.31	100.03	109.07
76	8A	604	HEA	C4B-NB-C1B	-2.31	102.68	105.07
84	Р	401	NDP	O5D-PN-O1N	-2.31	100.04	109.07
74	6F	501	HEC	CBD-CAD-C3D	-2.30	108.70	112.62
76	3A	601	HEA	CHB-C1B-C2B	-2.30	121.39	124.98
73	6B	402	HEM	C4B-CHC-C1C	2.29	125.58	122.56
76	9A	603	HEA	C4B-NB-C1B	-2.29	102.71	105.07
73	6A	401	HEM	C4C-CHD-C1D	2.29	125.58	122.56
76	9A	602	HEA	C4B-NB-C1B	-2.29	102.71	105.07
76	4A	602	HEA	C4B-NB-C1B	-2.28	102.71	105.07
73	1A	402	HEM	C4C-CHD-C1D	2.27	125.56	122.56
76	2A	601	HEA	C4B-NB-C1B	-2.27	102.72	105.07
73	1A	402	HEM	CMB-C2B-C1B	-2.27	121.58	125.04
74	1F	501	HEC	CBD-CAD-C3D	-2.27	108.75	112.62
73	6A	401	HEM	CMB-C2B-C1B	-2.27	121.58	125.04
76	7A	602	HEA	CHD-C1D-C2D	-2.27	120.45	126.72
76	4A	604	HEA	C4B-NB-C1B	-2.27	102.73	105.07
76	9A	603	HEA	C25-C23-C24	2.26	119.61	114.60
73	1B	402	HEM	C4B-CHC-C1C	2.26	125.54	122.56
81	В	502	FMN	C10-C4A-N5	-2.26	120.06	124.86
76	3A	604	HEA	C4B-NB-C1B	-2.26	102.74	105.07
83	k	200	8Q1	C38-C39-N41	2.26	120.22	116.42
83	5k	200	8Q1	C38-C39-N41	2.26	120.22	116.42
84	5P	401	NDP	O2N-PN-O1N	2.26	123.39	112.24
76	4A	602	HEA	C25-C23-C24	2.26	119.58	114.60
73	1A	402	HEM	C4A-C3A-C2A	$2.2\overline{6}$	$108.5\overline{6}$	107.00
76	9A	602	HEA	CHB-C1B-C2B	-2.26	121.46	124.98

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
76	7A	602	HEA	C4B-NB-C1B	-2.25	102.75	105.07
76	2A	601	HEA	CHD-C1D-C2D	-2.25	120.50	126.72
84	Р	401	NDP	O2N-PN-O1N	2.25	123.36	112.24
84	5P	401	NDP	O4B-C4B-C3B	2.24	109.55	105.11
84	Р	401	NDP	O4B-C4B-C3B	2.24	109.55	105.11
76	8A	601	HEA	C25-C23-C24	2.24	119.55	114.60
81	5B	501	FMN	C10-C4A-N5	-2.23	120.12	124.86
76	3A	604	HEA	C25-C23-C24	2.23	119.52	114.60
73	1B	401	HEM	CBD-CAD-C3D	-2.21	106.47	112.63
73	6A	401	HEM	C4A-C3A-C2A	2.20	108.52	107.00
73	6B	401	HEM	CBD-CAD-C3D	-2.19	106.55	112.63
76	8A	601	HEA	C4B-NB-C1B	-2.18	102.82	105.07
74	1E	401	HEC	CAA-CBA-CGA	-2.18	107.64	113.76
84	5P	401	NDP	C5B-C4B-C3B	-2.17	107.04	115.18
76	7A	601	HEA	CHD-C1D-C2D	-2.17	120.73	126.72
84	Р	401	NDP	C5B-C4B-C3B	-2.16	107.07	115.18
73	1B	401	HEM	C3D-C4D-ND	-2.16	107.76	110.17
76	2A	602	HEA	CHD-C1D-C2D	-2.16	120.74	126.72
73	6B	402	HEM	CBD-CAD-C3D	-2.16	106.62	112.63
74	6E	401	HEC	CAA-CBA-CGA	-2.16	107.71	113.76
76	8A	604	HEA	CHD-C1D-C2D	-2.16	120.76	126.72
73	1B	402	HEM	CBD-CAD-C3D	-2.14	106.67	112.63
76	3A	601	HEA	CHD-C1D-C2D	-2.14	120.80	126.72
73	6B	402	HEM	C4C-CHD-C1D	2.14	125.38	122.56
83	5J	200	8Q1	C38-C39-N41	2.13	120.01	116.42
73	1A	401	HEM	C4B-CHC-C1C	2.13	125.37	122.56
76	3A	604	HEA	C26-C15-C16	2.12	118.84	115.27
76	4A	604	HEA	CHD-C1D-C2D	-2.12	120.86	126.72
76	9A	602	HEA	CHB-C1B-NB	-2.12	122.13	124.43
81	5B	501	FMN	C9A-C5A-N5	-2.12	120.13	122.43
73	6B	401	HEM	C3D-C4D-ND	-2.12	107.81	110.17
83	J	200	8Q1	C38-C39-N41	2.12	119.98	116.42
76	9A	603	HEA	C26-C15-C16	2.11	118.83	115.27
76	4A	602	HEA	C26-C15-C16	2.11	118.82	115.27
76	9A	602	HEA	C25-C23-C24	2.11	119.26	114.60
76	8A	601	HEA	C26-C15-C16	2.11	118.82	115.27
73	6A	402	HEM	C4B-CHC-C1C	2.11	125.34	122.56
76	8A	604	HEA	C25-C23-C24	2.11	119.25	114.60
83	k	200	8Q1	O4-C1-S44	-2.11	119.88	122.61
81	В	502	FMN	C9A-C5A-N5	-2.11	120.14	122.43
76	7A	601	HEA	C26-C15-C16	2.10	118.81	115.27
83	5k	200	8Q1	O4-C1-S44	-2.10	119.88	122.61

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
76	9A	602	HEA	CHD-C1D-C2D	-2.10	120.91	126.72
76	3A	601	HEA	CHB-C1B-NB	-2.10	122.15	124.43
76	4A	604	HEA	C25-C23-C24	2.10	119.24	114.60
76	8A	601	HEA	CHD-C1D-C2D	-2.09	120.95	126.72
76	9A	603	HEA	CHD-C1D-C2D	-2.09	120.95	126.72
76	3A	601	HEA	C25-C23-C24	2.08	119.19	114.60
76	4A	602	HEA	CHD-C1D-C2D	-2.07	120.99	126.72
83	5J	200	8Q1	O4-C1-S44	-2.07	119.93	122.61
73	1B	402	HEM	C4C-CHD-C1D	2.07	125.29	122.56
76	2A	602	HEA	C26-C15-C16	2.07	118.75	115.27
83	J	200	8Q1	O4-C1-S44	-2.07	119.93	122.61
76	3A	604	HEA	CHD-C1D-C2D	-2.06	121.02	126.72
76	4A	604	HEA	CHB-C1B-NB	-2.05	122.20	124.43
84	5P	401	NDP	C3B-C2B-C1B	-2.05	99.04	102.89
81	В	502	FMN	C4A-C10-N1	-2.04	119.99	124.73
81	5B	501	FMN	C4A-C10-N1	-2.04	120.00	124.73
84	Р	401	NDP	C3B-C2B-C1B	-2.04	99.06	102.89
76	2A	602	HEA	C25-C23-C24	2.03	119.08	114.60
73	6A	402	HEM	C2D-C1D-ND	-2.02	107.46	109.88
73	1B	402	HEM	CMB-C2B-C1B	-2.01	121.97	125.04
76	8A	604	HEA	CHB-C1B-NB	-2.01	122.24	124.43
73	1B	402	HEM	C3B-C2B-C1B	2.01	107.97	106.49
73	6B	402	HEM	CMB-C2B-C1B	-2.00	121.99	125.04
73	6B	401	HEM	C3C-C4C-NC	-2.00	107.17	110.94
76	7A	601	HEA	C25-C23-C24	2.00	119.02	114.60
76	2A	602	HEA	C17-C18-C19	-2.00	122.84	127.66

There are no chirality outliers.

All (222) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
73	1B	402	HEM	C2A-CAA-CBA-CGA
73	6B	402	HEM	C2A-CAA-CBA-CGA
76	2A	601	HEA	C3B-C11-C12-C13
76	2A	601	HEA	O11-C11-C12-C13
76	2A	601	HEA	C15-C16-C17-C18
76	3A	604	HEA	C3B-C11-C12-C13
76	3A	604	HEA	O11-C11-C12-C13
76	3A	604	HEA	C15-C16-C17-C18
76	3A	604	HEA	C19-C20-C21-C22
76	4A	602	HEA	C3B-C11-C12-C13
76	4A	602	HEA	O11-C11-C12-C13

EMD-50210,	9F62
------------	------

Mol	Chain	Res	Type	Atoms
76	4A	602	HEA	C15-C16-C17-C18
76	4A	602	HEA	C19-C20-C21-C22
76	7A	602	HEA	C3B-C11-C12-C13
76	7A	602	HEA	O11-C11-C12-C13
76	7A	602	HEA	C15-C16-C17-C18
76	8A	601	HEA	C3B-C11-C12-C13
76	8A	601	HEA	O11-C11-C12-C13
76	8A	601	HEA	C15-C16-C17-C18
76	8A	601	HEA	C19-C20-C21-C22
76	9A	603	HEA	C3B-C11-C12-C13
76	9A	603	HEA	O11-C11-C12-C13
76	9A	603	HEA	C15-C16-C17-C18
76	9A	603	HEA	C19-C20-C21-C22
83	5J	200	8Q1	C1-C6-C7-C8
83	5J	200	8Q1	O27-C28-C29-C32
83	5k	200	8Q1	O4-C1-S44-C43
83	5k	200	8Q1	C6-C1-S44-C43
83	5k	200	8Q1	C28-C29-C32-C34
83	5k	200	8Q1	C28-C29-C32-O33
83	5k	200	8Q1	C30-C29-C32-C34
83	5k	200	8Q1	C30-C29-C32-O33
83	5k	200	8Q1	C31-C29-C32-C34
83	5k	200	8Q1	C31-C29-C32-O33
83	5k	200	8Q1	O33-C32-C34-N36
83	5k	200	8Q1	C32-C34-N36-C37
83	5k	200	8Q1	C28-O27-P24-O1
83	J	200	8Q1	C1-C6-C7-C8
83	J	200	8Q1	O27-C28-C29-C32
83	k	200	8Q1	O4-C1-S44-C43
83	k	200	8Q1	C6-C1-S44-C43
83	k	200	8Q1	C28-C29-C32-C34
83	k	200	8Q1	C28-C29-C32-O33
83	k	200	8Q1	C30-C29-C32-C34
83	k	200	8Q1	C30-C29-C32-O33
83	k	200	8Q1	C31-C29-C32-C34
83	k	200	$8\overline{\mathrm{Q1}}$	C31-C29-C32-O33
83	k	200	8Q1	O33-C32-C34-N36
83	k	200	$8\overline{\mathrm{Q1}}$	C32-C34-N36-C37
83	k	200	8Q1	C28-O27-P24-O1
84	5P	401	NDP	C5B-O5B-PA-O1A
84	$5\overline{\mathrm{P}}$	401	NDP	C5B-O5B-PA-O2A
84	Р	401	NDP	C5B-O5B-PA-O1A

EMD-50210, 9	9F62
--------------	------

Mol	Chain	Res	Type	Atoms
84	Р	401	NDP	C5B-O5B-PA-O2A
85	5s	401	COO	C14-C11-C13-O1
85	5s	401	COO	C12-C11-C13-O1
85	5s	401	COO	C14-C11-C13-C1
85	5s	401	COO	C12-C11-C13-C1
85	5s	401	COO	C13-C11-C12-O6A
85	5s	401	COO	C13-C1-N1-C2
85	5s	401	COO	O2-C1-N1-C2
85	5s	401	COO	C3-C4-N2-C5
85	5s	401	COO	O3-C4-N2-C5
85	5s	401	COO	O4-C7-S1-C6
85	5s	401	COO	C8-C7-S1-C6
85	5s	401	COO	S1-C7-C8-C9
85	s	401	COO	C14-C11-C13-O1
85	s	401	COO	C12-C11-C13-O1
85	s	401	COO	C14-C11-C13-C1
85	s	401	COO	C12-C11-C13-C1
85	s	401	COO	C13-C11-C12-O6A
85	s	401	COO	C13-C1-N1-C2
85	s	401	COO	O2-C1-N1-C2
85	s	401	COO	C3-C4-N2-C5
85	s	401	COO	O3-C4-N2-C5
85	s	401	COO	O4-C7-S1-C6
85	s	401	COO	C8-C7-S1-C6
85	s	401	COO	S1-C7-C8-C9
83	5k	200	8Q1	O35-C34-N36-C37
83	k	200	8Q1	O35-C34-N36-C37
84	$5\mathrm{P}$	401	NDP	O4B-C4B-C5B-O5B
84	5P	401	NDP	C3B-C4B-C5B-O5B
84	Р	401	NDP	O4B-C4B-C5B-O5B
84	Р	401	NDP	C3B-C4B-C5B-O5B
84	5P	401	NDP	O4D-C1D-N1N-C6N
84	Р	401	NDP	O4D-C1D-N1N-C6N
73	1B	401	HEM	C2A-CAA-CBA-CGA
73	6B	401	HEM	C2A-CAA-CBA-CGA
76	3A	601	HEA	C2A-CAA-CBA-CGA
76	4A	604	HEA	C2A-CAA-CBA-CGA
76	8A	604	HEA	C2A-CAA-CBA-CGA
76	9A	602	HEA	C2A-CAA-CBA-CGA
84	5P	401	NDP	O4D-C4D-C5D-O5D
84	Р	401	NDP	O4D-C4D-C5D-O5D
76	2A	601	HEA	C19-C20-C21-C22

EMD-50210,	9F62
------------	------

Mol	Chain	Res	Type	Atoms
76	7A	602	HEA	C19-C20-C21-C22
83	5J	200	8Q1	O27-C28-C29-C30
83	5J	200	8Q1	O27-C28-C29-C31
83	J	200	8Q1	O27-C28-C29-C30
83	J	200	8Q1	O27-C28-C29-C31
85	5s	401	COO	C15-C11-C12-O6A
85	s	401	COO	C15-C11-C12-O6A
85	5s	401	COO	N2-C5-C6-S1
85	s	401	COO	N2-C5-C6-S1
83	5k	200	8Q1	C11-C10-C9-C8
83	k	200	8Q1	C11-C10-C9-C8
83	5k	200	8Q1	C6-C7-C8-C9
83	k	200	8Q1	C6-C7-C8-C9
85	5s	401	COO	O4-C7-C8-C9
85	S	401	COO	O4-C7-C8-C9
84	5P	401	NDP	C3D-C4D-C5D-O5D
84	Р	401	NDP	C3D-C4D-C5D-O5D
83	5k	200	8Q1	O33-C32-C34-O35
83	k	200	8Q1	O33-C32-C34-O35
81	5B	501	FMN	C5'-O5'-P-O1P
81	В	502	FMN	C5'-O5'-P-O1P
85	5s	401	COO	P1A-O3A-P2A-O4A
85	s	401	COO	P1A-O3A-P2A-O4A
73	1A	401	HEM	C2A-CAA-CBA-CGA
73	6A	402	HEM	C2A-CAA-CBA-CGA
83	5k	200	8Q1	C28-O27-P24-O2
83	k	200	8Q1	C28-O27-P24-O2
83	5k	200	8Q1	O27-C28-C29-C30
83	5k	200	8Q1	O27-C28-C29-C31
83	k	200	8Q1	O27-C28-C29-C30
83	k	200	8Q1	O27-C28-C29-C31
85	5s	401	COO	C2X-C3X-O3X-P3X
85	s	401	COO	C2X-C3X-O3X-P3X
76	$2\overline{A}$	601	HEA	C11-C12-C13-C14
76	7A	602	HEA	C11-C12-C13-C14
83	5k	200	8Q1	C28-O27-P24-O3
83	k	200	8Q1	C28-O27-P24-O3
76	2A	602	HEA	C2A-CAA-CBA-CGA
76	7A	601	HEA	C2A-CAA-CBA-CGA
85	5s	401	COO	P1A-O3A-P2A-O5A
85	S	401	COO	P1A-O3A-P2A-O5A
85	5s	401	COO	O2-C1-C13-C11

Continued from previous page...

EMD-50210,	9F62
------------	------

Mol	Chain	Res	Type	Atoms
85	s	401	COO	O2-C1-C13-C11
85	5s	401	COO	N1-C1-C13-C11
85	s	401	COO	N1-C1-C13-C11
73	1A	402	HEM	CAD-CBD-CGD-O1D
73	6A	401	HEM	CAD-CBD-CGD-O1D
83	J	200	8Q1	C7-C8-C9-C10
83	5J	200	8Q1	C7-C8-C9-C10
81	5B	501	FMN	C3'-C4'-C5'-O5'
81	В	502	FMN	C3'-C4'-C5'-O5'
73	6B	402	HEM	CAA-CBA-CGA-O1A
73	1B	402	HEM	CAA-CBA-CGA-O1A
73	1B	402	HEM	CAA-CBA-CGA-O2A
73	6B	402	HEM	CAA-CBA-CGA-O2A
83	J	200	8Q1	C11-C12-C13-C14
83	5J	200	8Q1	C11-C12-C13-C14
76	7A	601	HEA	CAA-CBA-CGA-O2A
83	5J	200	8Q1	O4-C1-S44-C43
83	J	200	8Q1	O4-C1-S44-C43
76	2A	602	HEA	CAA-CBA-CGA-O2A
73	1A	402	HEM	CAA-CBA-CGA-O2A
73	6A	401	HEM	CAA-CBA-CGA-O2A
73	1A	402	HEM	CAA-CBA-CGA-O1A
73	6A	401	HEM	CAA-CBA-CGA-O1A
73	6B	401	HEM	CAD-CBD-CGD-O2D
76	2A	602	HEA	C26-C15-C16-C17
76	7A	601	HEA	C26-C15-C16-C17
73	1B	401	HEM	CAD-CBD-CGD-O2D
73	1B	401	HEM	CAD-CBD-CGD-O1D
73	6B	401	HEM	CAD-CBD-CGD-O1D
81	5B	501	FMN	C5'-O5'-P-O2P
81	В	502	FMN	C5'-O5'-P-O2P
85	5s	401	COO	C3X-O3X-P3X-O9A
85	s	401	COO	C3X-O3X-P3X-O9A
76	3A	601	HEA	C26-C15-C16-C17
76	4A	604	HEA	C26-C15-C16-C17
76	8A	604	HEA	C26-C15-C16-C17
76	9A	602	HEA	C26-C15-C16-C17
73	1A	401	HEM	CAD-CBD-CGD-O2D
73	6A	402	HEM	CAD-CBD-CGD-O2D
81	5B	501	FMN	O4'-C4'-C5'-O5'
81	В	502	FMN	O4'-C4'-C5'-O5'
76	2A	602	HEA	CAD-CBD-CGD-O2D

EMD-30210, 9FC

Mol	Chain	Res	Type	Atoms
76	7A	601	HEA	CAD-CBD-CGD-O2D
76	2A	602	HEA	CAA-CBA-CGA-O1A
76	7A	601	HEA	CAA-CBA-CGA-O1A
73	1A	402	HEM	CAD-CBD-CGD-O2D
73	6A	401	HEM	CAD-CBD-CGD-O2D
76	2A	602	HEA	CAD-CBD-CGD-O1D
76	3A	601	HEA	CAD-CBD-CGD-O2D
76	4A	604	HEA	CAD-CBD-CGD-O1D
76	4A	604	HEA	CAD-CBD-CGD-O2D
76	7A	601	HEA	CAD-CBD-CGD-O1D
76	8A	604	HEA	CAD-CBD-CGD-O1D
76	8A	604	HEA	CAD-CBD-CGD-O2D
76	9A	602	HEA	CAD-CBD-CGD-O1D
76	9A	602	HEA	CAD-CBD-CGD-O2D
73	1A	401	HEM	CAD-CBD-CGD-O1D
76	3A	601	HEA	CAD-CBD-CGD-O1D
73	6A	402	HEM	CAD-CBD-CGD-O1D
84	5P	401	NDP	C5B-O5B-PA-O3
84	Р	401	NDP	C5B-O5B-PA-O3
85	5s	401	COO	C3X-O3X-P3X-O8A
85	s	401	COO	C3X-O3X-P3X-O8A
76	3A	601	HEA	CAA-CBA-CGA-O2A
76	4A	604	HEA	CAA-CBA-CGA-O2A
76	8A	604	HEA	CAA-CBA-CGA-O2A
76	9A	602	HEA	CAA-CBA-CGA-O2A
76	2A	602	HEA	C19-C20-C21-C22
76	7A	601	HEA	C19-C20-C21-C22
83	5k	200	8Q1	C7-C8-C9-C10
83	k	200	8Q1	C7-C8-C9-C10
76	4A	604	HEA	CAA-CBA-CGA-O1A
76	8A	604	HEA	CAA-CBA-CGA-O1A
76	3A	601	HEA	C3B-C11-C12-C13
76	4A	604	HEA	C3B-C11-C12-C13
76	8A	604	HEA	C3B-C11-C12-C13
76	9A	602	HEA	C3B-C11-C12-C13
76	9A	602	HEA	CAA-CBA-CGA-O1A
76	3A	601	HEA	CAA-CBA-CGA-O1A
73	6B	402	HEM	CAD-CBD-CGD-O1D
83	5k	200	8Q1	C37-C38-C39-O40
83	k	200	8Q1	C37-C38-C39-O40
81	5B	501	FMN	N10-C1'-C2'-O2'
81	В	502	FMN	N10-C1'-C2'-O2'

Continued from previous page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms
73	1B	402	HEM	CAD-CBD-CGD-O1D

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-50210. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 144

Z Index: 144

6.2.2 Raw map

X Index: 144

Y Index: 144

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 139

Z Index: 123

6.3.2 Raw map

X Index: 139

Y Index: 140

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.1. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{50210}msk_{1.map}$ (i) 6.6.1

Υ

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 3804 $\rm nm^3;$ this corresponds to an approximate mass of 3437 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.184 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.184 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{B}_{\text{assolution ostimato}}(\hat{\mathbf{A}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	5.44	-	-
Author-provided FSC curve	5.45	7.59	6.19
Unmasked-calculated*	6.88	8.73	7.13

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 6.88 differs from the reported value 5.44 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-50210 and PDB model 9F62. Per-residue inclusion information can be found in section 3 on page 38.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.1 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.1).

9.4 Atom inclusion (i)

At the recommended contour level, 85% of all backbone atoms, 69% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.1) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6910	0.1860
1A	0.8300	0.2440
1B	0.8460	0.2770
1C	0.6800	0.1370
1D	0.5770	0.0990
1E	0.8530	0.2330
1F	0.8120	0.1950
1G	0.8560	0.2470
1H	0.8220	0.2080
1I	0.8030	0.1970
1J	0.6890	0.1300
1K	0.8600	0.2700
1L	0.8030	0.2010
1M	0.8730	0.2800
1N	0.7910	0.2110
10	0.8970	0.2540
1P	0.8370	0.2270
1Q	0.8430	0.2440
1R	0.8460	0.2440
1S	0.7830	0.2070
1T	0.8510	0.2610
2A	0.6240	0.1410
2B	0.6420	0.1470
2C	0.4820	0.0880
2D	0.5830	0.1110
2E	0.6350	0.1480
2F	0.6460	0.1490
2G	0.4980	0.0960
2H	0.4590	0.0850
21	0.5360	0.1070
2J	0.6200	0.1390
2K	0.4070	0.0790
2L	0.6350	0.1370
3A	0.7430	0.1530
3B	0.7470	0.1620

Continued from previous page...

Chain	Atom inclusion	Q-score
3C	0.6530	0.1570
3D	0.6860	0.1270
3E	0.6960	0.1110
3F	0.6850	0.1660
3G	0.5420	0.0910
3H	0.4920	0.0710
3I	0.7410	0.1140
3J	0.8140	0.1650
3K	0.6580	0.0910
3L	0.6510	0.1210
4A	0.5160	0.0480
4B	0.4480	0.0510
4C	0.1580	0.0530
4D	0.3330	0.0310
4E	0.1600	0.0580
4F	0.3750	0.1140
4G	0.1930	0.0230
4H	0.0700	0.0190
4I	0.2660	0.0090
4J	0.4530	0.0970
4K	0.2340	-0.0030
4L	0.3770	0.0120
5A	0.2210	0.1040
5B	0.2100	0.0750
5C	0.5440	0.1320
5D	0.7210	0.2010
5E	0.6690	0.1800
5F	0.7330	0.2060
5G	0.6710	0.1570
5H	0.5780	0.1630
51	0.6690	0.1690
5J	0.7740	0.2420
5K	0.7000	0.1730
5L	0.5610	0.1690
5M	0.4520	0.1210
5N	0.6910	0.1840
50	0.6280	0.1230
5P	0.7620	0.2020
5Q	0.7000	0.1810
5R	0.8110	0.2780
55	0.7140	0.1920
5T	0.8470	0.3010

α \cdot	l C		
Continued	trom	nremous	naae
Contracta	110110	proceeduo	pagem

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
5U	0.7940	0.2470
5V	0.8670	0.2840
5W	0.7650	0.2310
5X	0.9150	0.3130
5Y	0.8200	0.2410
5Z	0.8940	0.2740
5a	0.8880	0.2630
5b	0.8560	0.2740
5c	0.6960	0.1900
5d	0.8570	0.2770
5e	0.8920	0.2900
5f	0.7080	0.1910
5g	0.8570	0.2170
5h	0.9190	0.3150
5i	0.7980	0.1940
5j	0.8750	0.2410
5k	0.8810	0.2970
51	0.8000	0.2340
5m	0.6540	0.1690
5n	0.6620	0.1590
50	0.8560	0.2530
5p	0.8300	0.2420
5q	0.8920	0.3070
5r	0.8550	0.2790
5s	0.8380	0.2330
5t	0.8450	0.2780
5u	0.8500	0.2590
5v	0.8420	0.2510
5w	0.8890	0.2930
5x	0.8670	0.2910
5y	0.8940	0.3060
6A	0.8300	0.2460
6B	0.8460	0.2780
6C	0.6800	0.1380
6D	0.5780	0.1010
6E	0.8530	0.2320
6F	0.8160	0.1990
6G	0.8580	0.2420
6H	0.8250	0.2090
6I	0.7970	0.1980
6J	0.6960	0.1340
6K	0.8600	0.2700

α \cdot	1 C		
Continue	d trom	premous	naae
00100000000	~ j · o · · o	proceeduo	pagem

	\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
	6L	0.8040	0.2080
	6M	0.8730	0.2760
	6N	0.7920	0.2110
	6O	0.8950	0.2560
	6P	0.8390	0.2230
	6Q	0.8430	0.2420
	$6\mathrm{R}$	0.8480	0.2460
	6S	0.7840	0.2060
	$6\mathrm{T}$	0.8510	0.2590
	7A	0.6240	0.1410
	7B	0.6410	0.1440
	$7\mathrm{C}$	0.4840	0.0880
	$7\mathrm{D}$	0.5860	0.1120
	$7\mathrm{E}$	0.6330	0.1540
	$7\mathrm{F}$	0.6470	0.1490
	$7\mathrm{G}$	0.4960	0.0920
	$7\mathrm{H}$	0.4580	0.0820
	$7\mathrm{I}$	0.5450	0.1100
	7 J	0.6210	0.1370
	7K	0.4070	0.0860
	7L	0.6380	0.1370
	8A	0.7430	0.1550
	8B	0.7450	0.1630
	8C	0.6500	0.1610
	8D	0.6870	0.1310
	8E	0.7040	0.1150
	8F	0.6840	0.1660
	8G	0.5370	0.0930
	$8\mathrm{H}$	0.4930	0.0710
	8I	0.7440	0.1130
	8 J	0.8150	0.1690
	8K	0.6580	0.0900
	8L	0.6520	0.1220
	9A	0.5170	0.0460
	9B	0.4390	0.0480
	9C	0.1540	0.0600
	9D	0.3310	0.0250
	$9\mathrm{E}$	0.1620	0.0610
	$9\mathrm{F}$	0.3860	0.1180
ſ	$9\mathrm{G}$	0.1990	0.0270
ľ	$9\mathrm{H}$	0.0760	0.0280
F	9I	0.2770	0.0130

Continued	from	nrovioue	naae
Communea	JIOIII	previous	puye

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
9J	0.4660	0.1080
9K	0.2670	0.0010
9L	0.3690	0.0120
А	0.2220	0.1040
В	0.2100	0.0750
С	0.5440	0.1300
D	0.7220	0.2000
Е	0.6700	0.1780
F	0.7330	0.2070
G	0.6700	0.1570
Н	0.5770	0.1660
Ι	0.6730	0.1710
J	0.7740	0.2400
K	0.7000	0.1740
L	0.5610	0.1690
М	0.4600	0.1220
N	0.6900	0.1820
0	0.6260	0.1240
Р	0.7620	0.2030
Q	0.6980	0.1810
R	0.8110	0.2780
S	0.7130	0.1940
Т	0.8480	0.3000
U	0.7930	0.2490
V	0.8670	0.2800
W	0.7630	0.2330
Х	0.9160	0.3100
Y	0.8120	0.2390
Z	0.8950	0.2740
a	0.8960	0.2610
b	0.8590	0.2740
С	0.6980	0.1940
d	0.8540	0.2740
е	0.8920	0.2910
f	0.7000	0.1870
g	0.8690	0.2330
h	0.9190	0.3140
i	0.7880	0.1910
j	0.8700	0.2390
k	0.8810	0.2960
1	0.7990	0.2350
m	0.6570	0.1750

Continued from previous page...

Chain	Atom inclusion	Q-score
n	0.6620	0.1630
0	0.8540	0.2530
р	0.8280	0.2440
q	0.8930	0.3050
r	0.8560	0.2790
s	0.8390	0.2360
t	0.8470	0.2810
u	0.8510	0.2620
V	0.8480	0.2420
W	0.8970	0.2890
X	0.8670	0.2900
У	0.8940	0.3020

