

May 13, 2025 - 11:40 am BST

PDB ID	:	$9\mathrm{F58}~/~\mathrm{pdb}_00009\mathrm{f58}$
EMDB ID	:	EMD-50188
Title	:	Gcn2 dimer bound to the 60S ribosomal subunit
Authors	:	Paternoga, H.; Dimitrova-Paternoga, L.; Wilson, D.N.
Deposited on	:	2024-04-28
Resolution	:	3.10 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev118
MolProbity	:	4-5-2 with Phenix2.0rc1
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.43.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Clashscore	210492	15764		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for ≥ 3 , 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality of cl	nain
1	А	1659	19%	8	11%
1	С	1659	16% 15% •	84	%
1	D	1659	29% 24%	•	71%
1	Е	1659	28% 26%		71%
1	Н	1659	6% 6%	94%	
1	Ι	1659	7% 6% •	93%	
2	Р	25		60% 60%	40%

Continued from previous page...

Mol	Chain	Length	Quality of chain							
3	4	158	70% 25%							
4	h	121	81%	17%						
		121	0178	1770 •						
5	d	387	91%	9%						
6	е	297	89%	8% •						
7	f	176	85%	11%						
8	g	244	80% 9%	11%						
9	h	256	86%	••9%						
10	i	191	7%	6%						
11	:	001	13%							
	J	221	90%	5% 5%						
12	k	174	89%	6% 5%						
13	m	199	93%	•••						
14	n	138	96%	•••						
15	0	204	90%	9%						
16	n	199	88%	10%						
17	P	104	16%	10,0 00						
11	q	184	94%	• ••						
18	r	186	92%	7% ••						
19	s	189	80%	18%						
20	${\rm t}$	172	88%	10% •						
21	u	160	9%	8% •						
22	V	121	78% 5%	17%						
 		197	9%							
	W	107	5%	6% •						
24	у	155	39% • 59%							
25	Z	142	77% 8%	15%						
26	J	127	94%	5% ••						
27	К	136	87%	8% 5%						

Mol	Chain	Length	Quality of chain							
28	L	149	• 93%	6% •						
29	М	59	27% 93%	5% •						
30	Ν	105	90%	• 8%						
31	Ο	113	91%							
32	Q	130	85%	12% ••						
33	R	107	9%	•••						
34	Т	120	92%	5% ••						
35	U	100	18%	8% •						
36	V	88	<u>6%</u> 83%	14% ••						
37	W	78	31%	5%•						
38	Х	51	78%	18% ••						
39	Y	128	5% 40% • 59%							
40	Z	106	92%	7% •						
41	0	92	84%	15% •						
42	3	362	87%	9% ••						
43	S	121	85%	7% • 7%						
44	с	254	84%	13% •						
45	a	3396	10% 66% 23%	• 8%						

Continued from previous page...

2 Entry composition (i)

There are 46 unique types of molecules in this entry. The entry contains 135896 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			AltConf	Trace
1	Δ	399	Total	С	Ν	0	S	0	0
1	11	022	2590	1683	417	477	13	0	0
1	н	104	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	9	0
1	11	104	845	531	150	160	4		0
1	т	108	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
1	1	100	864	543	155	164	2	0	0
1	С	250	Total	\mathbf{C}	Ν	0	\mathbf{S}	0	0
1	U	209	2125	1358	366	392	9	0	0
1	Л	474	Total	С	Ν	0	\mathbf{S}	0	0
1		474	3796	2430	637	720	9	0	0
1	1 E	472	Total	С	Ν	0	S	0	0
	473	3790	2429	634	718	9	0	0	

• Molecule 1 is a protein called eIF-2-alpha kinase GCN2.

• Molecule 2 is a protein called Large ribosomal subunit protein eL41B.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	Р	15	Total 144	C 89	N 38	O 16	S 1	0	0

• Molecule 3 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues		Α	AltConf	Trace			
3	4	158	Total 3354	C 1500	N 586	O 1110	Р 158	0	0

• Molecule 4 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
4	b	121	Total 2580	C 1152	N 461	0 846	Р 121	0	0

• Molecule 5 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	d	386	Total 3075	C 1950	N 584	O 533	S 8	0	0

• Molecule 6 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	е	291	Total 2333	C 1474	N 407	O 450	${S \over 2}$	0	0

• Molecule 7 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
7	f	156	Total 1239	C 800	N 222	0 216	S 1	0	0

• Molecule 8 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues		At	AltConf	Trace			
8	g	218	Total 1754	C 1133	N 319	O 301	S 1	0	0

• Molecule 9 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	h	233	Total 1804	C 1151	N 323	O 327	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	i	191	Total 1518	C 963	N 274	0 277	${S \atop 4}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
11	j	210	Total 1700	C 1080	N 321	O 293	S 6	0	0

• Molecule 12 is a protein called 60S ribosomal protein L11-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	k	166	Total 1327	C 832	N 247	O 244	$\frac{S}{4}$	0	0

• Molecule 13 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
13	m	193	Total 1543	C 962	N 315	O 266	0	0

• Molecule 14 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	n	136	Total 1053	C 675	N 199	0 177	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 15 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
15	О	203	Total 1720	C 1077	N 361	0 281	S 1	0	0

• Molecule 16 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues		At	AltConf	Trace			
16	р	197	Total 1555	C 1003	N 289	0 262	S 1	0	0

• Molecule 17 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
17	q	183	Total 1420	C 882	N 281	O 257	0	0

• Molecule 18 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		At	oms		AltConf	Trace	
18	r	185	Total 1441	C 908	N 290	0 241	${S \over 2}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
19	s	155	Total 1249	C 776	N 264	O 209	0	0

• Molecule 20 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	t	170	Total 1432	C 922	N 265	0 242	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	u	159	Total 1276	C 805	N 246	0 221	$\frac{S}{4}$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
22	V	100	Total 796	C 516	N 131	O 149	0	0

• Molecule 23 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	AltConf	Trace			
23	W	136	Total 1003	C 628	N 189	0 179	S 7	0	0

• Molecule 24 is a protein called 60S ribosomal protein L24-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
24	V	63	Total	С	Ν	0	S	0	0
	J		521	336	102	82	1		

• Molecule 25 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	Z	121	Total 964	C 620	N 169	0 173	${S \over 2}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
26	J	126	Total 993	$\begin{array}{c} \mathrm{C} \\ 625 \end{array}$	N 192	O 176	0	0

• Molecule 27 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
27	K	129	Total 1046	C 684	N 193	O 169	0	0

• Molecule 28 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	AltConf	Trace			
28	L	148	Total 1173	C 749	N 231	0 190	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
29	М	58	Total 462	C 289	N 100	О 73	0	0

• Molecule 30 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	Ν	97	Total 743	C 479	N 124	0 139	S 1	0	0

• Molecule 31 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	Ο	109	Total 876	$\begin{array}{c} \mathrm{C} \\ 556 \end{array}$	N 167	0 152	S 1	0	0

• Molecule 32 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	Q	127	Total 1020	C 647	N 205	0 167	S 1	0	0

• Molecule 33 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	R	106	Total 850	$\begin{array}{c} \mathrm{C} \\ 540 \end{array}$	N 165	0 144	S 1	0	0

• Molecule 34 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	Т	117	Total 960	C 610	N 184	0 165	S 1	0	0

• Molecule 35 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	U	99	Total 771	C 481	N 156	0 132	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	V	87	Total	С	Ν	0	S	0	0
50	v	01	681	414	148	114	5	0	0

• Molecule 37 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
37	W	77	Total 612	C 391	N 115	O 106	0	0

• Molecule 38 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
38	Х	50	Total	С	N	0	S	0	0
			436	2'(2)	97	65	2		

• Molecule 39 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
39	Y	52	Total 417	C 259	N 86	O 67	${f S}{5}$	0	0

• Molecule 40 is a protein called 60S ribosomal protein L42-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	Ζ	105	Total 847	C 534	N 170	0 138	${ m S}{ m 5}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	0	91	Total 694	C 429	N 138	0 121	S 6	0	0

• Molecule 42 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
42	3	356	Total 2714	C 1710	N 516	0 485	${ m S} { m 3}$	0	0

• Molecule 43 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	S	112	Total 880	C 545	N 179	0 152	$\frac{S}{4}$	0	0

• Molecule 44 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
44	с	246	Total 1874	C 1168	N 380	O 325	S 1	0	0

• Molecule 45 is a RNA chain called 25S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
45	a	3134	Total 67031	C 29941	N 12080	O 21876	Р 3134	0	0

• Molecule 46 is ZINC ION (CCD ID: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
46	V	1	Total Zn 1 1	0
46	Y	1	Total Zn 1 1	0
46	Ζ	1	Total Zn 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
46	0	1	Total Zn 1 1	0
46	S	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: eIF-2-alpha kinase GCN2

ALA TRP	GLU	GLU	SER	ASP	GLU	VAL	PHE	SER	THR	GLU	GLU	SER ASP	LEU	SER	SER	SER	ASP	PHE	GLU	GLU ASN	ASP	LEU	ASP	GLN SER	SER	PHE	LYS	ARG	ASN	SIH	LEU	ASP	ASN	ASN	ASP	PHE	SER	GLY SER
GLY TYR	ASP	ILE VAL	PHE	ASN	SER	ARG	ASP ASP	GLU	ASN	ASP	LEU	ASP HIS	ASP	THR	SER	THR	SER	SER	GLU	SER. GLN	ASP	ASP THR	ASP	GLU	SER	SER	ILE GLN	ASN	PR0	ARG	ARG	ASN	PHE VAL	LYS	PRO MET	THE	VAL	LYS
LYS SER	TEU LEU	PHE	GLN	GLU GLU	TYR	GLU	ASN ARG	THR	LEU	ASP	LEU	ILE HIS	SER	GLU	LEU	ASN	GLN GLN	ARG	ASP	GLU TYR	TRP	ARG	PHE	ARG GLN	ILE	GLU	ALA	SER	ILE	HIS	GLN	GLY	TLE TLE	SIH	ARG	TEU	PRO	MET ASN
TLE	ASP	GLU	ARG	VAL	LYS	GLY	ASP PHE	GLY	LEU	LYS	ASN	VAL HIS	ARG	SER	ASP	ILE	LEU	TEU	ASP	SER. GLN	ASN	LEU PRO	GLY	SER	ASP	LEU	THR	ALA	GLY	THR	MET	TYR	VAL AI.A	THR	GLU VAL	TEU	GLY	THR GLY
HIS TYR	GLU	LYS	ASP	TYR	SER I FII	GLY	ILE	PHE	PHE	MET	ILE	TYR PRO	PHE	SER	GLY	MET	GLU ARG	VAL	ASN	ILE LEU	LYS	LYS	ARG	SER VAL	SER	GLU	PRO	PRO	PHE	ASP	ASP	LYS	MET LYS	VAL	GLU LYS	LYS	ILE	ARG LEU
TEU	ASP HIS	ASP	ASN	LYS ARG	PRO GI V	ALA	ARG THR	TEU	LEU	SER	GLY	TRP LEU	PRO	VAL r vs	SIH	GLN	GLII	VAL	ILE	LYS GLIJ	ALA	LEU	SER	LEU SER	ASN	SER	SER	TRP	GLN	GLN	ARG	GLU	SER LEU	PHE	GLN	SER	L IR SER	THR
ASN	TLEU	PHE	ASN	VAL	PRO THR	SER	THR PRO	PHE	ALA	ILE	LEU	ARG SER	GLN	MET	GLU	GLU	VAL VAL	LYS	ILE	PHE ARG	LYS	HIS	GLY	ILE GLU	ASN	ALA	PR.O PR.O	ARG	PHE	PRO	ALA	PRO	TYR	GLY	THR GLN	ASN	TYR	GLU VAL
LEU ASP	GLY	GLY THR	VAL	GLN	CI N	TYR	ASP LEU	THR	TYR	MET	ALA	ARG TYR	LEU	SER 1 VS	ASN	PRO	SER	ILE	SER	LYS GI.N	TYR	ARG MET	GLN	HIS VAL	TYR	PRO	PRO ASP	SIH	ARG	SER	LEU	GLU	PR0 ARG	LYS	PHE GLY	GLU	ASP	PHE ASP
ILE	LYS	SER	SER	GLU	GLY	TYR	ASP ALA	GLU	SER	LYS	ILE	ILE ASP	GLU	I LE I FII	THR	VAL	PRO	VAL	PHE	GLU LYS	THR	ASN THR	PHE	PHE ILE	LEU	SIH	ALA	ILE	GLU	SER	VAL PHE	ASN	PHE THR	ASN	ASP	LYS	GLN	ARG PRO
LEU VAL	ARG	MET	SER	VAL	GLY	ALA	ARG SER	PHE	LYS	VAL	LYS	GLU	LEU	LYS	GLN	LEU	ASN	SER	SER	THR ALA	LEU	ASN	LEU	GLU	PHE	PHE	ARG	ASP	GLU	ALA	ALA LYS	LYS	ARG L.F.U	TYR	LYS L.FIJ	MET	ASP	PRO
HIS	LYS	ILE	ASP	LEU	SER	ILE	SER	VAL	LEU	TYR	LEU	LYS PRO	LEU	GLU	ALA	ARG	ASN VAL.	VAL	ILE	SER	LEU	SER	TYR	ASN SER	ALA	TYR	CI.YS	GL Y	MET	PHE	ALA	VAL	TYR ASP	ASP	GLY SER	SER	ASN	MET ILE
ALA ALA	GL Y GL Y	ARG TVR	ASP	UEU TEU	ILE SFB	PHE	PHE	ARG	PR0 GED	GLY	LYS	LYS SER	SER	ASN	ARG	LYS	ALA VAL	GLY	PHE	ASN LEU	ALA	GLII	THR	TLE	GLY GLY	ALA	GLN	TYR	LYS	LEU	ALA SER	GLY	ASN	ILE	LYS	ARG	ARG	PHE
LYS ASP	THR	VAL	TRP	PRO	SER	CYS	ASP VAL	LEU	ILE	SER	PHE	SER	SER	LEU	ASP	THR	GLY	VAL	THR	ILE LEU	ASN	THR	TRP	GLN	ASN	LYS	ALA	MET	ARG	ASP	SER	SER	VAL	ASP	VAL VAL	THR	ALA	GLN
ASP GLY	ASP	TRP	LEU LEU	TLE	LYS	GLN	ALA TYR	PRO	LEU	ASN	SIH	LYS ARG	LYS	TYR I VS	PRO	LEU	LYS TLE	LYS	LYS	LEU SER	THR	ASN VAL	ASP	ILE ASP	LEU	LEU	ASP	PHE	THR	LEU	1 I H	GLN	GLU THR	GLY	ASN LYS	SER	TLE	ASN
SER	THR	GLY	LYS	ALA ASP	GLU	LYS	ARG TRP	ASP	GLU	SER	SER	ALA GLY	SER	SER.	GLU	GLY	ASP TLF	ASP	ASP	VAL VAL	ALA	GLY SFR	THR	ASN	GLN	VAL	TVR	VAL	ASN	MET	ALA THR	ARG	SER LYS	LYS	ALA ASN	LYS	GLU	LYS TRP
VAL TYR	ASP	AL A	ARG	ASN SER	SER	MET	ILE LEU	SIH	ASN	SER	ASN	ALA PRO	ILE	THE	VAL	ASP	ALA	ARG	ASP	GLU THR	TEU	GLU	ILE	SER ILE	THR	LEU	ALA	LYS	GLU	TRP	ARG	LYS	VAL PHE	GLY	GL.Y	ASN	SER	THR PRO
				_																																		

 \bullet Molecule 1: eIF-2-alpha kinase GCN2

Chain H: 6%

94%

THR	GLN	CTU CTU	LEU	ASP	PHE	GLN	VAL	VAL	THR	GLN	LEU	GLU	ASP	ASP	LEU	GLN	ILE	LYS	GLU THR	LYS	GLU	GLN LEU	GLU	LYS	GLU	ARG	TAS	GLN	GLU	THR	SAT	LYS	SER	ASP	GLN	ARG	ILE	ASP	TLE	VAL	GLN ARG
GLU	LEU	CTU GLU	ARG	GLN	ASP	ASP ASP	ASP	LEU	PHE	ASN	THR	THR	GLN	ASP	LEU	GLN	PRO	SER	GLU TRP	VAL	ALA	SER. GLV	GLU	ALA	VAL	PHE	SYL	THR	TAS	ALA	LTS	PRO	ASN	SER	PHE	TYS	LYS	ALA	VAL	ASN	LYS UHU
PRO	ILE	LYS LEU	THR	SER	ILE	PHE SER	PHE	SER	GLN	PHE	VAL	LYS	PRO	ITE	PRO	PRO CT II	SER	PRO	LEU AL.A	ASP	PHE	LEU MET	SER	SER	MET	MET	ASN	PHE	TYR	LEU	SER	GLU TLE	GLU	LEU ASP	ASN	SER	TIR	ASN	SER	ASN	GLY
LYS	GLU	ALA	ASN	LEU	TAS	GLU	GLU	THR VAL.	LEU	LYS	ALA LYS	HIS	ASP	VAL	ASN	ARG	PHE	GLY	TYR THR	VAL	GLU	ARG MET	GLY	ARG	ASN	ALA	PHE	VAL	LYS	ILE	LEU	LEU THR	GLU	TYR	ASN	TYR	PRO	LEU	ASP	LEU	GLN
SER	VAL	GLY	VAL	ASN I FII	ALA	THR ALA	ARG	TRP	MET	ILE	LEU	LEU	GLU	GLY	GLU	ALA	SIH	LYS	CEU GLV	ILE	VAL	SIH SIH	CYS	ILE	LEU	GLU	VAL	ILE	VAL	LYS	ASP	ASP PHF	GLY	SER	ILE	PRO 1 VC	LEU	VAL	SER	THR	КТЭ ЛАН
TYR	THR	VAL	ASN	MET	SER	ARG TYR	PRO	ASN LVS	ASN	GLY	SER	VAL	GLU	LEU SER	PRO	SER	TRP	ILE	ALA PRO	GLU	LEU	LEU LYS	PHE	ASN	ALA	LYS	GLN	ARG	THR	ASP	TRP	GLN	GLY	VAL	PHE	ILE	ULE VLD	ILE	ALD ALC	SER	ASP
VAL	MET	ASN	CLU	THR	GLN	GLU	LEU	ASP Ser	THR	SER	ASP	GLU	THR	TYR	ASP	LEU	SER	LYS	MET	ASN	ASN	ASP PRO	LYS	LYS	TEU	GLY	LEU	CLU	LEU	PRO	LYS	PHE	ARG	THR	ILE	ASP	THR	ILE	ARG	PHE	LEU
VAL	SER	GLU	VAL	ASN	ASN	SER	GLU	LEU THR	PRO	GLY	THR	ILE	THR	AL	GLY	ASN CT V	GLY	ARG	THR	SER	CLN	SER	ILE	ARG	ARG	SER	ASN	VAL CT V	SER	ARG	PHE SER	SER	ASN	PRO ALA	THR	ARG	ARG	TYR	ALA SER	ASP	GLU GLU
GLU	ILE	ALA VAL	TEU	GLY	GLY	ALA PHE	GLY	GLN VAL.	VAL	LYS	ALA ARG	ASN	ALA	ASP	SER	ARG	TYR	ALA	ILE	LYS	ILE	ARG HTS	THR	GLU	TAS	LEU	THR	ILE	SER	GLU	VAL MET	LEU	ALA	SER	ASN	HIS	TYR	VAL	ARG	TYR	ALA
ALA	TRP	GLU	GLU	ASP SFR	MET	ASP GLU	ASN	VAL	GLU	SER	ASP	GLU	GLU	ASP	LEU	SER	SER	SER	SER	PHE	GLU	GLU	ASP	LEU	ASP	GLN	SER	ILE	LYS	ASN	THR	ASN	ASP	LEU	ASN	SER	TRP	ASP	TLE	SER	SER
GLY	TYR	ASP	ILE	VAL	GLU	ASN SER	SER	ARG	ASP	GLU	GLU	ASP	LEU	HIS	ASP	THR	SER	THR	SER	SER	GLU	SER. GLN	ASP	ASP THR	ASP	TAS	SER	LYS	JER	CLN GLN	VAL	PRO	ARG	ARG	PHE	VAL	PRO	MET	ALA	VAL	LYS
LYS	SER	THU	PHE	TLE	MET	GLU TYR	CYS	GLU	ARG	THR	TYR	ASP	LEU	SIH	SER	GLU	TEU	ASN	CL.N GL.N	ARG	ASP	GLU TVR	TRP	ARG	PHE	ARG	ILE	LEU	ALA	LEU	TYR	ILE	SER	GLN	ILE	ILE	ARG	ASP	LYS	PRO	ASN ASN
ILE	PHE	ASP	GLU	SER	ASN	VAL LYS	ILE	GLY	PHE	CLY GLY	ALA	LYS	ASN	VAL	ARG	SER	ASP	ILE	LEU LYS	TEU	ASP	SER. GLN	ASN	LEU PRO	GLY	SER	ASP	ASN	THR	SER	ALA ILE	GLY THR	ALA	MET TVR	VAL	ALA	GLU	VAL	ASP	GLY	АТЭ ННЛ
HIS	TYR	GLU	LYS	ILE	MET	TYR SER	LEU	GLY	ILE	PHE	GLU	MET	TLE	I YK PRO	PHE	SER	GLY	MET	GLU ARG	VAL	ASN	LEU	LYS	LYS	ARG	SER	VAL	ILE	PHE	PRO	ASP	PHE	ASP	ASN	MET	LYS	GLU	LYS	TLE	ILE	LEU
LEU	ILE	ASP HIS	ASP	PRO	LYS	ARG PRO	GLY	ALA ARG	THR	LEU	ASN	SER	GLY	LEU	PRO	VAL	HIS	GLN	ASP GLII	VAL	ILE	LYS GLU	ALA	LEU	SER	LEU	ASN	PR0 GEB	SER	PRO	GLN	GLN GLN	VAL	ARG	SER	LEU	ASN	GLN	TYR	SER	THR
ASN	ASP	LEU	PHE	ASP	SER	VAL PRO	THR	SER	PRO	PHE	ALA	ILE	LEU	SER	GLN	MET	CLU	GLU	VAL VAL	LYS	ILE	PHE ARG	LYS	HIS	GLY	ILE	ASN	ASN	PRO	PRO	AKG	PRO	LYS	ALA	ILE	TYR	THR	GLN	VICH	TYR	VAL
LEU	ASP	GLY	GLY	THR	LEU	GLN	GLN	T YR ASP	LEU	THR	PRO	MET	ALA	TYR	LEU	SER 1 VC	ASN	PRO	SER	ILE	SER	GI.N	TYR	ARG MET	GLN	SIH	TYR	ARG	PRO	ASP	NIS	ARG	SER	LEU	PRO	ARG	PHE	GLY	ULE GLU	ASP	ASP
ILE	ILE	LYS	SER	SER	GLU	GLY	PHE	TYR	ALA	GLU	TEU	LYS	ILE	ASP	GLU	ILE	THR	VAL	PHE	VAL	PHE	GLU 1.YS	THR	ASN THR	PHE	PHE	TEU	ASN	ALA	ASP	TEU	GLU	VAL	PHE	PHE	THR	ILE	ASP	ALA	GLN	PRO
LEU	VAL	SER	MET	LEU SFR	GLN	VAL GLY	PHE	ALA	SER	PHE	GLU	VAL	LYS	GLU	LEU	LYS	GLN	TEU	ASN TLF	SER	SER	THR AL.A	TEU	ASD	TEU	CLU	PHE	ASP	ARG	LEU	PHE	GLU AL.A	ALA	LYS	ARG	LEU	TYS	LEU	TLE	ASP	DR0 PR0
HIS	LEU	LYS	ILE	GLU	SER	LEU SER	HIS	ILE	LYS	VAL	SER	TYR	LEU	PRO	LEU	GLU	ALA	ARG	ASN VAL.	VAL	ILE	SER	LEU	SER	TYR	ASN	ALA	PHE	TYS	GLY GLY	GLY	MET	HIS	ALA	TYR	ASP	GLY	SER	ARG	ASN	ME'I ILE

 \bullet Molecule 1: eIF-2-alpha kinase GCN2

16%

15%

Chain C:

84%

ASN	ILE	LEU	ASP ASN	SER	PRO	THR SER	THR	PHE	ALA	ILE	LEU	SER	GLN	THR	GLU	GLU	VAL	LYS	PHE	ARG	SIH	GLY	ILE	GLU	ASN	ALA PRO	PRO	ARG	PHE	LYS	ALA	PRO	TYR	GLY	GLN	ASN VAL	TYR	VAL
LEU Ach	LYS	GLY GLY	THR VAL	LEU	LEU	GLN TYR	ASP	THR	TYR	MET	ALA	TYR	LEU	SER	ASN	PRO SER	TEU	ILE	LYS	GLN	ARG	MET	HIS	VAL	ARG	PRO PRO	ASP	HIS SER	ARG	SER	LEU	GLU	ARG	LYS	GLY	GLU	ASP	ASP
ILE	SER	LYS SER	SER SER	GLU	GLY	PHE TYR	ASP	ALA GLU	SER	LYS	ILE	ASP	GLU	ILEU LEU	THR	VAL	PRO	VAL	GLU	LYS	ASN	THR	PHE	ILE	ASN	HIS ALA	ASP	ILE LEU	GLU	SER VAL	PHE	ASN	THR	ASN TIF	ASP	LYS ALA	GLN	PRO
LEU	VAL	ARG MET	LEU SER	GLN	GLY	PHE ALA	ARG	PHE	LYS	VAL	LYS	GLU	LEU	LYS ALA	GLN	LEU	ILE	SER	THR	ALA	ASN	ASP	GLU	LEU	ASP	PHE ARG	LEU	ASP PHE	GLU	ALA ALA	LYS	LYS	LEU	TYR I VS	TEU	MET ILE	ASP	PRO
HIS	LYS	LYS ILE	GLU ASP	SER	SER	HIS ILE	SER	LIS VAL	LEU	TYR	LEU	LYS PRO	LEU	GLU VAL	ALA	ARG	VAL	VAL	SER	PRO 1 ETI	LEU SER	ASN	ASN	SER	PHE	TYR LYS	GLY	GLY ILE	MET	PHE HIS	ALA	VAL	ASP	ASP	SER	SER ARG	ASN	TLE
ALA	GLY	GLY ARG	TYR ASP	THR	ILE	SER PHE	PHE	ALA ARG	PRO	GLY	LYS	LYS SER	SER	ASN THR	ARG	LYS	VAL	GLY	ASN	LEU	ALA TRP	GLU	ILE	PHE	ILE	ALA GLN	ASN	T YR PHE	LYS	LEU ALA	SER	GLY	ARG	ILE I VS	LYS	ARG ASN	ARG	LEU
LYS	THR	ALA VAL	ASP TRP	LYS	SER	ARG CYS	ASP	VAL LEU	ILE	SER	PHE	ASN	SER	LEU LEU	ASP	THR TI F	GLY	VAL	ILE	LEU	THR	LEU	LYS	GLN	ILE	LYS ALA	ASP	MET LEU	ARG	ASP CYS	SER	SER	ASP	ASP	VAL	THR GLY	ALA	GLN
ASP	ILE	ASP TRP	ILE LEU	LEU	LYS	GLN	ALA	LTK PRO	LEU	ASN	SIH	LYS	LYS	TYR LYS	PRO	LEU r vs	ILE	LYS	LEU	SER	ASN	VAL	ASF ILE	ASP	ASP	LEU ASP	GLU	PHE LEU	THR	LEU TYR	GLN	GLN	THR	GLY	LYS	SER LEU	ILE	ASP
SER	THR	LEU GLY	ASP LYS	ALA	GLU	PHE LYS	ARG	ASP	GLU	SER	SER	ALA GLY	SER	SER GLN	GLU	GLY	ILE	ASP	VAL	VAL	GLY	SER	ASN	ASN	LYS	VAL ILE	TYR	VAL PRO	ASN	MET ALA	THR	ARG	LYS	LYS	ASN	L YS ARG	GLU GLU	TRP
VAL	GLU	ASP ALA	ALA ARG	ASN	SER	ASN MET	ILE	HIS	ASN	SER	ASN	PRO	ILE	THR	VAL	ASP	LEU	ARG	GLU	THR	GLU	ILE	SER	TLE	SER	LEU ALA	GLN	1 TR	GLU	LEU	ARG	LYS	PHE	GLY	GLY	ASN	SER	PRO
ARG	PHE	ALA	SER	TYR	ASN	SER	LYS	ALA I	SIH	STY ST	ASN	TRP	ALA	LEU	TYR	CYS	CTS ST	THR	LYS	SER	VAL	ILE	LEU	ULC					- 1									
																<u>, н</u>																						

 \bullet Molecule 1: eIF-2-alpha kinase GCN2

	29%		
Chain D:	24%	• 71%	
MET SER LEU SER HIS LEU LEU LEU	ASP GLN TYR GLU GLU CYS ASN GLU	ALA ALA ALA ALA ALA ALA ALA ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	GLU GLU PRO VAL
GLU SER SER THR THR LEU HIS PHE	ALA MET THR PRO NET TYR TYR ALA ALA	ANU GIUN FILE CILU CILU VALU VALU CILU CILU CILU CILU CILU CILU CILU CI	THR SER PHE
THR GLN GLU LYS LYS LYS LSP GLU PHE PHE	GLN VAL VAL VAL ASN ASN GLN GLU GLU	ASP ASP CLEU CLEU ARG ARG CLU CLEU CLEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	VAL GLN ARG
GLU LEU GLU LYS ARG GLN ASP ASP	ASP ASP ASP ASP LEU PHE ASN ASN THR THR	L BUN L L BUN L L L BUN L L L L BUN L L L L L L L L L L L L L L L L L L L	ASN PRO LYS
PRO ILE LYS LEU THR SER ASP ILE	PHE SER PHE SER LYS GLN PHE LEU VAL LYS	TYRU TYRU PRO PRO GLU GLU ASP ALA ASP PHE TEU MET ASP CLU MET CLU MET CLU MET ASP ASP SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ASN GLY LYS
LYS GLU GLU ALA ASN LEU GLU CTU	GLU LEU GLU GLU VAL LYS LYS ALA ALA HIS	ASP ASP ASP ASP ASS ASS ASS ASS ASS ASS	LEU GLN
SER VAL GLY PHE VAL ASN LEU ALA	ALA ALA ARG TRP MET MET ARG LEU LEU	GLU GLU GLU ALA ALA ALA LEU ALA LEU VAL VAL LEU VAL VAL LEU VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	THR TYR GLY
TYR THR VAL LEU ASN MET LEU SER	TYR PRO ASN LYS ASN CYS GLY SER SER VAL	LEU LEU SER SER THR THR THR THR ALL CLU LLEU CLU LLEU CLU LLEU CLU LLEU CLU LLEU CLU CLEU CLU CLEU CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	SER ASP ILE

D1441 11443 11445 11445 11446 11446 11446 11446 11446 11446 11446 11446 11446 11446 11446 11446 11446 11446 11446 11466 11467 11468 11467 11467 11468 11476 11475 11476 11477 11478 11478 11476 11476 11476 11476 11476 11476 11476 11476 11476 11476 11476 11482 11482 11482 11482 11482 11483 11484 </td <td>T1492 61493 N1494 K1495 S1496 LEU LEU LEU ASN ASP</td>	T1492 61493 N1494 K1495 S1496 LEU LEU LEU ASN ASP
SER LLEU LLEU LLEU LLEU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
VAL VAL ALA ALA ALA ALA ALA ALA ALA ALA	
ARG PHEE PIER SER SER SER ANA ASN ASN ASN ASN ASN ASN ASN ASN ASN	
• Molecule 1: eIF-2-alpha kinase GCN2	
Chain E: 26% · 71%	
MET SER LEU LEU LEU LEU ASP ASP CIU LEU CIU LEU CIU CIU CIU CIU CIU CIU CIU CIU CIU CI	
SER RILE TILE TILE TILE TILE TILE TILE TILE T	
THR THR CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
CLU CLU LEU LEU CLU CLU CLU CLU CLU CLU ASP ASP ASP ASP ASP ASP ASP CLU CLU ASP CLU ASP CLU CLU ASP CLU ASP CLU ASP CLU ASP CLU ASP CLU ASP ASP CLU ASP CLU ASP CLU ASP CLU ASP ASP CLU ASP CLU ASP CLU ASP ASP ASP ASP ASP ASP CLU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
PRO THE THE THE SER SER PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	
LYS CIU ALA ALA ALA ALA ALA ALA ALA ALA ALA CIU CIU CIU CIU CIU CIU CIU CIU CIU CIU	
SER VAL VAL VAL VAL ASE ASE ASE ASE ASE ASE ASE ASE ASE ASE	
TYR TYR VAL LEU VAL LEU LEU LEU LEU LEU CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
VAL VAL ASN ASN ASN ASN CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	
YAL YAL YAL YAL YAL YAL YAL ASP THR SER SER SER THR THR THR THR THR THR THR THR THR TH	
GLU ILE VAL VAL CLU GLY GLY GLY GLN CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	
ALA ALA LED CUU ASP ASP ASP ASP CUU ASP CUU CUU CUU CUU CUU CUU CUU CUU CUU CU	
TYR ASP PRO PHE PHE ASP PHE ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
LYS SER THE LEU THE LEU TTE MET MET MET MET MET MET MET MET MET	

• Molecule 2: Large ribosomal subunit protein eL41B

Chain P:

60% 60%

W O R L D W I D E POTEIN DATA BANK 40%

• Molecule 18: 60S ribosomal protein L18-A Chain r: 92% 7% •• MET • Molecule 19: 60S ribosomal protein L19-A 9% Chain s: 80% 18% LEU LYS GLU ASP ALA • Molecule 20: 60S ribosomal protein L20-A 6% Chain t: 88% • 10% • Molecule 21: 60S ribosomal protein L21-A 9% Chain u: 92% 8% • MEJ • Molecule 22: 60S ribosomal protein L22-A 26% Chain v: 78% 5% 17% MET ALA PRO ASN THR SER SER ARG LYS GLN VAL THR PRO GLU GLU GLU GLU GLU GLU GLU GLU • Molecule 23: 60S ribosomal protein L23-A Chain w: 93% 6% •

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	14552	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	400	Depositor
Maximum defocus (nm)	900	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV $(4k \times 4k)$	Depositor
Maximum map value	0.174	Depositor
Minimum map value	-0.101	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.006	Depositor
Recommended contour level	0.0279	Depositor
Map size (Å)	395.52, 395.52, 395.52	wwPDB
Map dimensions	384, 384, 384	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.03, 1.03, 1.03	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths]	Bond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.66	0/2649	0.90	3/3588~(0.1%)
1	С	0.68	0/2165	0.95	2/2916~(0.1%)
1	D	0.63	0/3873	0.97	4/5234~(0.1%)
1	Е	0.63	0/3868	0.94	4/5228~(0.1%)
1	Н	0.60	0/858	0.97	0/1157
1	Ι	0.60	0/880	0.97	0/1190
2	Р	0.57	0/145	0.98	0/186
3	4	0.55	0/3747	0.97	9/5832~(0.2%)
4	b	0.57	0/2884	0.96	9/4491~(0.2%)
5	d	0.63	0/3146	0.96	2/4228~(0.0%)
6	е	0.56	0/2382	0.98	0/3214
7	f	0.58	0/1260	0.92	0/1694
8	g	0.60	0/1791	0.97	1/2410~(0.0%)
9	h	0.57	0/1836	0.98	1/2481~(0.0%)
10	i	0.58	0/1539	0.93	1/2073~(0.0%)
11	j	0.60	0/1736	0.94	0/2328
12	k	0.56	0/1348	0.98	0/1807
13	m	0.59	0/1568	1.00	1/2106~(0.0%)
14	n	0.57	0/1068	0.98	0/1438
15	0	0.61	0/1757	1.00	1/2354~(0.0%)
16	р	0.64	0/1585	1.02	3/2128~(0.1%)
17	q	0.63	0/1443	0.95	0/1944
18	r	0.62	0/1465	0.98	1/1965~(0.1%)
19	S	0.61	0/1266	1.01	0/1690
20	t	0.61	0/1468	0.98	2/1973~(0.1%)
21	u	0.60	0/1300	0.91	1/1743~(0.1%)
22	V	0.53	0/812	0.94	0/1099
23	W	0.64	0/1018	0.98	0/1369
24	У	0.62	0/533	0.89	0/707
25	Z	0.56	0/979	0.97	0/1321
26	J	0.60	0/1004	0.99	0/1341
27	K	0.58	0/1070	0.93	0/1432

Mol	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
28	L	0.65	0/1204	0.94	0/1612	
29	М	0.66	0/473	0.98	0/629	
30	Ν	0.57	0/751	0.93	0/1008	
31	0	0.56	0/890	0.96	1/1196~(0.1%)	
32	Q	0.61	0/1041	0.96	1/1394~(0.1%)	
33	R	0.61	0/868	0.87	0/1168	
34	Т	0.58	0/969	1.01	0/1289	
35	U	0.61	0/778	0.95	0/1034	
36	V	0.68	0/696	1.02	2/923~(0.2%)	
37	W	0.59	0/618	0.95	0/826	
38	Х	0.58	0/443	0.96	0/588	
39	Y	0.63	0/423	1.00	0/562	
40	Ζ	0.60	0/860	0.93	0/1136	
41	0	0.63	0/701	1.05	0/934	
42	3	0.62	0/2765	1.02	4/3740~(0.1%)	
43	S	0.63	0/890	0.99	1/1189~(0.1%)	
44	с	0.66	0/1908	0.96	0/2564	
45	a	0.57	0/75028	0.99	211/116969~(0.2%)	
All	All	0.59	0/145749	0.98	265/213428~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
5	d	0	1
14	n	0	1
15	0	0	1
16	р	0	1
20	t	0	1
35	U	0	1
45	a	0	2
All	All	0	8

There are no bond length outliers.

All (265) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
45	а	420	G	O3'-P-O5'	-10.02	88.97	104.00
42	3	317	PRO	N-CA-C	-9.12	97.73	111.41
45	a	873	С	C2'-C3'-O3'	-9.10	100.05	113.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
45	a	2313	А	O3'-P-O5'	-8.73	90.91	104.00
45	a	1417	G	O3'-P-O5'	-8.71	90.94	104.00
45	a	361	А	O3'-P-O5'	-8.64	91.04	104.00
3	4	110	С	O3'-P-O5'	-8.57	91.14	104.00
45	a	1398	U	O3'-P-O5'	-8.35	91.48	104.00
45	a	1324	U	O3'-P-O5'	-8.32	91.52	104.00
45	a	110	G	O3'-P-O5'	-8.30	91.55	104.00
45	a	2514	U	C4'-C3'-O3'	8.15	121.63	109.40
45	a	817	А	O3'-P-O5'	-7.90	92.15	104.00
45	a	2100	А	O3'-P-O5'	-7.77	92.34	104.00
45	а	2513	U	C3'-C2'-C1'	-7.75	93.75	101.50
18	r	60	PRO	N-CA-CB	7.62	107.46	103.19
45	a	3107	U	O3'-P-O5'	-7.48	92.78	104.00
31	0	64	VAL	N-CA-CB	7.41	120.05	110.57
20	t	97	VAL	N-CA-CB	-7.34	104.14	112.21
45	a	169	U	C2'-C3'-O3'	7.24	120.36	109.50
4	b	76	А	O3'-P-O5'	-7.23	93.15	104.00
45	a	3228	С	C2'-C3'-O3'	7.23	120.35	109.50
45	a	2147	А	O3'-P-O5'	-7.22	93.17	104.00
45	a	2867	С	O3'-P-O5'	-7.17	93.24	104.00
45	a	1838	G	O3'-P-O5'	-7.16	93.26	104.00
45	a	1554	U	C4'-C3'-O3'	7.12	120.09	109.40
45	a	74	G	O3'-P-O5'	-7.12	93.32	104.00
45	a	599	С	O3'-P-O5'	-7.09	93.36	104.00
45	a	666	А	O3'-P-O5'	-7.07	93.40	104.00
45	а	2748	А	O3'-P-O5'	-6.99	93.51	104.00
45	a	3375	А	O3'-P-O5'	-6.96	93.56	104.00
45	a	2761	G	O3'-P-O5'	-6.95	93.58	104.00
45	a	3359	А	O3'-P-O5'	-6.93	93.61	104.00
45	a	1418	А	O3'-P-O5'	-6.90	93.64	104.00
45	a	403	С	C2'-C3'-O3'	-6.88	103.38	113.70
45	a	1880	U	O3'-P-O5'	-6.85	93.73	104.00
45	a	2944	U	C2'-C3'-O3'	-6.84	103.44	113.70
45	a	1618	G	O3'-P-O5'	-6.80	93.80	104.00
45	а	913	А	O3'-P-O5'	-6.79	93.81	104.00
45	a	1907	С	O3'-P-O5'	-6.79	93.82	104.00
3	4	89	А	O3'-P-O5'	-6.76	93.86	104.00
45	a	1604	G	O3'-P-O5'	-6.76	93.86	104.00
45	a	2593	A	O3'-P-O5'	-6.76	93.87	104.00
5	d	205	VAL	N-CA-CB	6.74	118.44	110.55
45	a	1445	U	$C4'-\overline{C3'}-\overline{O3'}$	-6.74	102.89	113.00
45	a	1481	A	O3'-P-O5'	-6.70	93.96	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
45	a	374	А	O3'-P-O5'	-6.67	94.00	104.00
45	a	2898	G	O3'-P-O5'	-6.67	94.00	104.00
36	V	40	PRO	N-CA-CB	-6.65	95.29	102.60
45	a	2192	С	O3'-P-O5'	-6.64	94.03	104.00
45	a	1303	А	O3'-P-O5'	-6.59	94.11	104.00
45	a	979	U	C4'-C3'-O3'	6.58	119.27	109.40
45	a	2434	U	C4'-C3'-O3'	6.55	119.22	109.40
45	a	352	А	O3'-P-O5'	-6.53	94.20	104.00
45	a	1097	G	C2'-C3'-O3'	6.52	119.29	109.50
45	a	2541	U	C2'-C3'-O3'	6.49	119.24	109.50
45	a	1888	U	O3'-P-O5'	-6.46	94.30	104.00
45	a	2222	А	O3'-P-O5'	-6.46	94.31	104.00
45	a	1446	А	O3'-P-O5'	-6.44	94.33	104.00
45	a	91	G	O3'-P-O5'	-6.44	94.34	104.00
45	a	386	А	O3'-P-O5'	-6.43	94.35	104.00
4	b	120	С	O3'-P-O5'	-6.43	94.36	104.00
45	a	860	G	O3'-P-O5'	-6.41	94.38	104.00
45	a	2735	U	O3'-P-O5'	-6.40	94.40	104.00
45	a	870	G	O3'-P-O5'	-6.37	94.44	104.00
45	a	1385	С	C4'-C3'-O3'	-6.36	103.45	113.00
45	a	3119	U	O3'-P-O5'	-6.33	94.50	104.00
3	4	150	G	O3'-P-O5'	-6.30	94.54	104.00
45	a	1883	А	O3'-P-O5'	-6.30	94.55	104.00
15	0	155	VAL	N-CA-CB	6.30	119.11	110.54
16	р	110	PRO	N-CA-CB	6.29	106.49	103.22
45	a	396	А	O3'-P-O5'	-6.26	94.61	104.00
45	a	2131	А	O3'-P-O5'	-6.23	94.65	104.00
45	a	1000	С	O3'-P-O5'	-6.21	94.68	104.00
42	3	98	ARG	CG-CD-NE	-6.19	98.39	112.00
45	a	3077	A	C4'-C3'-O3'	-6.19	103.72	113.00
32	Q	39	ASP	CA-CB-CG	6.16	118.76	112.60
45	a	3317	U	C2'-C3'-O3'	6.15	118.72	109.50
45	a	1848	G	O3'-P-O5'	-6.14	94.78	104.00
45	a	324	A	O3'-P-O5'	-6.14	94.80	104.00
45	a	1724	U	O3'-P-O5'	-6.13	94.80	104.00
45	a	1589	А	O3'-P-O5'	-6.05	94.93	104.00
45	a	1352	A	C4'-C3'-O3'	6.05	118.47	109.40
1	С	844	ASP	CA-CB-CG	6.02	118.62	112.60
45	a	1545	A	O3'-P-O5'	-6.02	94.97	104.00
1	Е	1138	ASP	CA-CB-CG	6.01	118.61	112.60
45	a	2402	A	C2'-C3'-O3'	6.01	118.51	109.50
4	b	96	U	O3'-P-O5'	-6.00	95.00	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	b	92	А	O3'-P-O5'	-5.98	95.03	104.00
1	D	1138	ASP	CA-CB-CG	5.98	118.58	112.60
45	a	1934	G	O3'-P-O5'	-5.98	95.03	104.00
45	a	1315	U	O3'-P-O5'	-5.97	95.05	104.00
45	a	1538	G	O3'-P-O5'	-5.96	95.06	104.00
45	a	218	G	O3'-P-O5'	-5.95	95.08	104.00
45	a	1494	U	O3'-P-O5'	-5.95	95.08	104.00
45	a	1721	U	O3'-P-O5'	-5.94	95.08	104.00
45	a	2927	С	O3'-P-O5'	-5.93	95.11	104.00
45	a	2302	G	O3'-P-O5'	-5.90	95.16	104.00
45	a	1317	А	O3'-P-O5'	-5.90	95.16	104.00
45	a	3351	U	C4'-C3'-O3'	5.88	118.22	109.40
45	a	2594	С	O3'-P-O5'	-5.87	95.19	104.00
45	а	1515	А	C4'-C3'-O3'	-5.87	104.19	113.00
45	a	2948	С	C3'-C2'-O2'	5.86	119.49	110.70
45	a	1424	С	O3'-P-O5'	-5.86	95.22	104.00
1	D	1082	ASP	CA-CB-CG	5.84	118.44	112.60
45	a	152	U	O3'-P-O5'	-5.84	95.24	104.00
13	m	50	PRO	N-CA-CB	-5.83	97.12	103.25
45	a	816	А	C2'-C3'-O3'	5.82	118.23	109.50
16	р	67	THR	CA-CB-OG1	-5.81	100.89	109.60
45	a	367	А	O3'-P-O5'	-5.80	95.31	104.00
45	a	2524	А	O3'-P-O5'	-5.79	95.31	104.00
45	a	3258	U	O3'-P-O5'	-5.78	95.33	104.00
45	a	94	G	C4'-C3'-O3'	-5.78	104.34	113.00
45	a	1911	А	O3'-P-O5'	-5.77	95.34	104.00
1	D	1476	ASP	CA-CB-CG	5.77	118.37	112.60
45	а	2950	G	O3'-P-O5'	-5.77	95.35	104.00
45	a	2269	U	O3'-P-O5'	-5.75	95.37	104.00
45	a	2400	G	C2'-C3'-O3'	-5.75	105.08	113.70
4	b	111	U	O3'-P-O5'	-5.74	95.39	104.00
45	a	1542	G	O3'-P-O5'	-5.74	95.39	104.00
45	a	3112	G	O3'-P-O5'	-5.73	95.40	104.00
45	a	2605	G	O3'-P-O5'	-5.73	95.41	104.00
45	a	2630	С	O3'-P-O5'	-5.72	95.41	104.00
45	a	993	G	O3'-P-O5'	-5.71	95.43	104.00
45	a	2177	G	O3'-P-O5'	-5.70	95.45	104.00
45	a	1815	U	$C2'-\overline{C3'}-\overline{O3'}$	5.69	118.04	109.50
45	a	148	G	O3'-P-O5'	-5.69	95.47	104.00
45	a	2641	U	O3'-P-O5'	-5.68	95.48	104.00
45	a	786	A	O3'-P-O5'	-5.67	95.50	104.00
45	a	2941	A	O3'-P-O5'	-5.65	95.52	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
45	a	941	G	O3'-P-O5'	-5.65	95.53	104.00
45	a	763	G	O3'-P-O5'	-5.65	95.53	104.00
45	a	2833	А	O3'-P-O5'	-5.64	95.54	104.00
8	g	229	PHE	CA-CB-CG	5.62	119.42	113.80
45	a	2421	U	O3'-P-O5'	-5.62	95.57	104.00
45	a	282	G	C2'-C3'-O3'	-5.62	105.28	113.70
45	a	915	А	O3'-P-O5'	-5.60	95.60	104.00
45	a	2113	А	O3'-P-O5'	-5.60	95.60	104.00
45	а	1904	C	C2'-C3'-O3'	-5.60	105.30	113.70
45	a	2282	U	O3'-P-O5'	-5.59	95.61	104.00
1	Е	1082	ASP	CA-CB-CG	5.58	118.18	112.60
1	С	621	ASP	CA-CB-CG	5.58	118.18	112.60
45	a	2362	С	O3'-P-O5'	-5.58	95.63	104.00
45	a	408	A	O3'-P-O5'	-5.56	95.66	104.00
45	а	1632	А	O3'-P-O5'	-5.55	95.68	104.00
45	a	2187	G	O3'-P-O5'	-5.55	95.68	104.00
3	4	101	U	O3'-P-O5'	-5.55	95.68	104.00
45	a	3216	G	O3'-P-O5'	-5.50	95.75	104.00
3	4	112	U	O3'-P-O5'	-5.50	95.75	104.00
45	a	3092	С	O3'-P-O5'	-5.50	95.76	104.00
45	a	1582	С	O3'-P-O5'	-5.49	95.76	104.00
45	a	85	А	O3'-P-O5'	-5.49	95.77	104.00
4	b	34	С	O3'-P-O5'	-5.49	95.77	104.00
45	a	1407	А	C2'-C3'-O3'	-5.49	105.47	113.70
1	D	1431	VAL	N-CA-CB	5.49	116.97	110.55
45	a	2367	A	O3'-P-O5'	-5.48	95.77	104.00
45	а	626	U	O3'-P-O5'	-5.48	95.78	104.00
45	а	2192	C	C4'-C3'-O3'	-5.48	104.78	113.00
45	a	1104	G	O3'-P-O5'	-5.48	95.78	104.00
45	а	514	G	O3'-P-O5'	-5.47	95.79	104.00
45	а	1169	A	O3'-P-O5'	-5.47	95.80	104.00
45	a	316	U	O3'-P-O5'	-5.47	95.80	104.00
45	a	2957	G	O3'-P-O5'	-5.47	95.80	104.00
45	a	2934	A	C2'-C3'-O3'	-5.46	105.50	113.70
45	a	916	G	C2'-C3'-O3'	-5.46	105.51	113.70
10	i	92	TYR	N-CA-CB	5.45	117.98	109.97
42	3	98	ARG	N-CA-CB	5.45	118.57	110.29
45	a	2926	A	O3'-P-O5'	-5.45	95.83	104.00
45	a	1306	G	O3'-P-O5'	-5.44	95.84	104.00
16	р	84	LEU	N-CA-CB	-5.44	102.08	110.13
42	3	230	VAL	N-CA-CB	5.44	117.27	110.47
45	a	2609	A	C4'-C3'-O3'	-5.44	104.84	113.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
45	a	2701	U	C4'-C3'-O3'	-5.42	104.88	113.00
45	a	1632	А	C4'-C3'-O3'	-5.40	104.89	113.00
45	a	816	А	C4'-C3'-O3'	-5.40	101.30	109.40
45	a	2689	А	O3'-P-O5'	-5.39	95.92	104.00
45	a	2107	А	O3'-P-O5'	-5.39	95.92	104.00
1	А	463	ASP	CA-CB-CG	5.38	117.97	112.60
45	a	2978	U	O3'-P-O5'	-5.36	95.95	104.00
45	a	942	U	O3'-P-O5'	-5.36	95.96	104.00
45	a	2273	G	C3'-C2'-C1'	-5.34	96.16	101.50
45	a	3009	G	O3'-P-O5'	-5.34	96.00	104.00
45	a	2434	U	C2'-C3'-O3'	-5.33	101.50	109.50
45	a	2587	U	O3'-P-O5'	-5.33	96.01	104.00
3	4	61	A	O3'-P-O5'	-5.32	96.02	104.00
45	a	578	А	O3'-P-O5'	-5.32	96.02	104.00
45	a	94	G	C2'-C3'-O3'	5.32	121.68	113.70
45	a	3037	U	O3'-P-O5'	-5.31	96.03	104.00
45	a	1056	U	O3'-P-O5'	-5.31	96.04	104.00
1	А	523	PRO	N-CA-C	5.30	123.40	112.47
45	a	1140	G	O3'-P-O5'	-5.30	96.05	104.00
45	a	3221	С	O3'-P-O5'	-5.30	96.05	104.00
45	a	2148	U	O3'-P-O5'	-5.28	96.07	104.00
4	b	54	U	O3'-P-O5'	-5.28	96.09	104.00
45	a	1177	G	O3'-P-O5'	-5.27	96.09	104.00
45	a	2854	U	O3'-P-O5'	-5.27	96.10	104.00
4	b	43	U	O3'-P-O5'	-5.27	96.10	104.00
45	a	1812	G	O3'-P-O5'	-5.27	96.10	104.00
45	a	864	G	C1'-C2'-O2'	5.27	116.30	108.40
45	a	1333	С	O3'-P-O5'	-5.27	96.10	104.00
43	S	51	LEU	N-CA-CB	5.26	118.28	110.29
45	a	3226	A	O3'-P-O5'	-5.25	96.12	104.00
45	a	3346	U	O3'-P-O5'	-5.25	96.12	104.00
45	a	3365	U	O3'-P-O5'	-5.25	96.13	104.00
45	a	2959	С	O3'-P-O5'	-5.24	96.14	104.00
45	a	682	U	O3'-P-O5'	-5.24	96.15	104.00
45	a	1769	G	O3'-P-O5'	-5.23	96.16	104.00
45	a	1125	U	O3'-P-O5'	-5.23	96.16	104.00
45	a	2106	А	O3'-P-O5'	-5.23	96.16	104.00
45	a	1366	A	O3'-P-O5'	-5.22	96.17	104.00
45	a	1820	U	O3'-P-O5'	-5.22	96.17	104.00
45	a	2278	С	O3'-P-O5'	-5.22	96.17	104.00
45	a	678	G	O3'-P-O5'	-5.22	96.17	104.00
1	Е	1480	ASP	CA-CB-CG	5.21	117.81	112.60

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
45	a	2746	А	O3'-P-O5'	-5.21	96.19	104.00
5	d	10	ARG	CG-CD-NE	-5.21	100.55	112.00
45	a	926	А	O3'-P-O5'	-5.20	96.20	104.00
45	a	2936	А	O3'-P-O5'	-5.20	96.20	104.00
3	4	142	С	O3'-P-O5'	-5.19	96.22	104.00
45	a	1062	А	O3'-P-O5'	-5.18	96.24	104.00
45	a	2935	U	C1'-C2'-O2'	-5.18	104.04	111.80
3	4	110	С	C4'-C3'-O3'	-5.17	105.24	113.00
45	a	2807	U	C4'-C3'-O3'	-5.17	105.25	113.00
45	a	2123	G	O3'-P-O5'	-5.16	96.26	104.00
45	a	1723	А	O3'-P-O5'	-5.16	96.26	104.00
45	a	107	А	O3'-P-O5'	-5.16	96.27	104.00
45	a	3395	G	O3'-P-O5'	-5.14	96.29	104.00
45	a	2979	U	O3'-P-O5'	-5.13	96.30	104.00
45	a	2857	С	C4'-C3'-O3'	-5.12	105.33	113.00
45	a	2273	G	O3'-P-O5'	-5.11	96.33	104.00
45	a	38	U	C1'-C2'-O2'	5.11	116.06	108.40
45	a	2744	U	O3'-P-O5'	-5.11	96.34	104.00
20	t	142	GLN	CB-CA-C	-5.10	102.27	110.74
45	a	1778	G	C2'-C3'-O3'	5.10	117.16	109.50
45	a	1166	G	O3'-P-O5'	-5.10	96.35	104.00
45	a	2872	А	O3'-P-O5'	-5.10	96.35	104.00
45	a	333	G	O3'-P-O5'	-5.09	96.36	104.00
45	a	3323	А	O3'-P-O5'	-5.09	96.37	104.00
45	a	64	G	O3'-P-O5'	-5.09	96.37	104.00
45	a	374	А	C4'-C3'-O3'	5.09	117.03	109.40
45	a	534	U	O3'-P-O5'	-5.08	96.38	104.00
45	a	600	G	O3'-P-O5'	-5.08	96.39	104.00
45	a	987	U	O3'-P-O5'	-5.08	96.39	104.00
3	4	95	G	O3'-P-O5'	-5.07	96.40	104.00
4	b	94	С	O3'-P-O5'	-5.07	96.40	104.00
36	V	44	THR	CA-CB-OG1	-5.07	102.00	109.60
45	a	296	А	C4'-C3'-O3'	-5.07	105.40	113.00
45	a	1161	G	O3'-P-O5'	-5.07	96.40	104.00
45	a	2537	U	C2'-C3'-O3'	5.07	117.10	109.50
45	a	234	G	O3'-P-O5'	-5.06	96.40	104.00
1	Ε	1312	ASP	CA-CB-CG	5.05	117.65	112.60
45	a	1482	A	$C4'-\overline{C3'}-\overline{O3'}$	5.05	116.98	109.40
21	u	41	ASP	CA-CB-CG	5.05	117.65	112.60
45	a	2341	A	O3'-P-O5'	-5.05	96.43	104.00
1	A	290	ASP	CA-CB-CG	5.05	117.65	112.60
45	a	1075	A	O3'-P-O5'	-5.04	96.43	104.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
45	a	98	G	O3'-P-O5'	-5.04	96.44	104.00
45	a	3215	A	O3'-P-O5'	-5.04	96.44	104.00
9	h	164	VAL	N-CA-CB	5.03	116.76	110.47
45	a	2283	G	O3'-P-O5'	-5.03	96.45	104.00
45	a	2942	C	O3'-P-O5'	-5.03	96.46	104.00
45	a	142	C	O3'-P-O5'	-5.03	96.46	104.00
45	a	90	С	O3'-P-O5'	-5.02	96.47	104.00
45	a	2435	G	O3'-P-O5'	-5.02	96.47	104.00
45	a	1768	U	O3'-P-O5'	-5.01	96.48	104.00
45	a	2184	U	O3'-P-O5'	-5.01	96.49	104.00

There are no chirality outliers.

All (8) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
35	U	31	GLY	Peptide
45	a	2281	А	Sidechain
45	a	2950	G	Sidechain
5	d	253	GLY	Peptide
14	n	8	LYS	Peptide
15	0	127	TYR	Peptide
16	р	74	ARG	Sidechain
20	t	153	PRO	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2590	0	2636	1	0
1	С	2125	0	2127	21	0
1	D	3796	0	3812	66	0
1	Е	3790	0	3805	56	0
1	Н	845	0	844	6	0
1	Ι	864	0	860	3	0
2	Р	144	0	174	0	0
3	4	3354	0	1695	14	0
4	b	2580	0	1304	3	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	d	3075	0	3142	17	0
6	е	2333	0	2286	11	0
7	f	1239	0	1326	3	0
8	g	1754	0	1834	10	0
9	h	1804	0	1877	10	0
10	i	1518	0	1587	7	0
11	j	1700	0	1731	5	0
12	k	1327	0	1357	3	0
13	m	1543	0	1608	5	0
14	n	1053	0	1149	2	0
15	0	1720	0	1779	10	0
16	р	1555	0	1659	12	0
17	q	1420	0	1437	3	0
18	r	1441	0	1543	9	0
19	s	1249	0	1336	2	0
20	t	1432	0	1470	6	0
21	u	1276	0	1323	5	0
22	V	796	0	812	2	0
23	W	1003	0	1048	3	0
24	У	521	0	551	2	0
25	Z	964	0	1025	4	0
26	J	993	0	1081	5	0
27	K	1046	0	1116	7	0
28	L	1173	0	1215	5	0
29	М	462	0	491	1	0
30	Ν	743	0	797	2	0
31	0	876	0	912	2	0
32	Q	1020	0	1090	7	0
33	R	850	0	880	3	0
34	Т	960	0	1070	5	0
35	U	771	0	849	3	0
36	V	681	0	683	8	0
37	W	612	0	682	1	0
38	Х	436	0	475	9	0
39	Y	417	0	455	0	0
40	Z	847	0	914	2	0
41	0	694	0	734	8	0
42	3	2714	0	2829	15	0
43	S	880	0	941	5	0
44	с	1874	0	1943	17	0
45	a	67031	0	33688	167	0
46	0	1	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
46	S	1	0	0	0	0
46	V	1	0	0	0	0
46	Y	1	0	0	0	0
46	Ζ	1	0	0	0	0
All	All	135896	0	101982	450	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (450) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:1000:PRO:HA	1:D:1005:GLN:OE1	1.36	1.25	
1:E:1000:PRO:HA	1:E:1005:GLN:OE1	1.36	1.20	
1:D:989:VAL:HG11	1:E:989:VAL:HG11	1.36	1.07	
1:D:1004:TRP:CZ3	1:E:990:ILE:HG23	1.89	1.07	
1:D:990:ILE:HG23	1:E:1004:TRP:CZ3	1.97	0.98	
1:D:1100:ARG:NH1	1:E:1022:ASP:OD1	2.08	0.87	
1:D:990:ILE:HG23	1:E:1004:TRP:CH2	2.14	0.83	
43:S:74:ARG:NH2	45:a:1639:C:OP2	2.13	0.82	
28:L:21:ARG:NH2	45:a:640:U:OP1	2.14	0.81	
1:D:1004:TRP:CH2	1:E:990:ILE:HG23	2.16	0.81	
1:D:1080:VAL:HG13	1:E:1080:VAL:HG13	1.63	0.81	
15:0:188:ARG:NH2	45:a:31:C:OP2	2.17	0.78	
1:D:1013:PHE:CD1	1:D:1083:LYS:HG2	2.22	0.75	
1:D:1013:PHE:CG	1:D:1083:LYS:HG2	2.22	0.74	
1:D:1004:TRP:CZ3	1:E:990:ILE:CG2	2.71	0.73	
1:D:1022:ASP:HA	1:E:1067:PRO:HG2	1.71	0.72	
41:0:17:ARG:NH1	45:a:860:G:OP1	2.23	0.72	
1:D:1067:PRO:HD3	1:E:1025:PHE:CD1	2.26	0.71	
1:A:336:ASN:ND2	45:a:2276:G:OP2	2.25	0.70	
15:0:155:VAL:O	15:0:162:ARG:NH2	2.25	0.70	
41:0:4:ARG:NH2	45:a:838:G:O6	2.25	0.69	
1:D:990:ILE:CG2	1:E:1004:TRP:CZ3	2.75	0.69	
1:C:848:ASN:OD1	1:E:991:LYS:NZ	2.26	0.69	
1:E:1474:ASN:HD21	45:a:3027:A:N6	1.93	0.66	
1:C:654:TYR:HE1	1:E:991:LYS:HZ3	1.42	0.66	
45:a:1495:U:H5	45:a:1835:A:N1	1.94	0.65	
1:C:623:ARG:HH21	1:D:1016:SER:HB3	1.60	0.64	
15:0:135:VAL:HG21	15:0:151:ILE:HG21	1.80	0.64	
3:4:126:A:O2'	3:4:128:U:OP2	2.15	0.64	

	la page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:H:1595:ILE:HD11	1:H:1611:VAL:HG23	1.80	0.63	
42:3:324:LEU:O	42:3:327:LEU:O	2.17	0.63	
1:C:601:GLU:N	1:E:1197:ALA:HB1	2.14	0.63	
36:V:2:GLY:N	45:a:2138:A:HO2'	1.97	0.63	
1:C:600:GLU:HA	1:E:1197:ALA:HA	1.80	0.62	
1:D:994:LEU:HG	1:E:1004:TRP:HH2	1.64	0.62	
20:t:12:ARG:NH1	20:t:57:GLU:OE1	2.33	0.62	
1:D:1109:ILE:HD11	1:E:1037:ASN:HB2	1.80	0.62	
45:a:577:C:O2'	45:a:579:G:OP1	2.17	0.62	
23:w:87:ARG:HH22	23:w:137:VAL:HG21	1.65	0.61	
25:z:82:LEU:HD11	25:z:135:ILE:HD11	1.80	0.61	
26:J:82:VAL:HB	26:J:85:VAL:CG1	2.30	0.61	
5:d:266:ARG:HH11	5:d:266:ARG:HG2	1.66	0.61	
1:D:1394:VAL:HA	1:D:1445:TRP:HB2	1.84	0.60	
43:S:20:ILE:HD12	43:S:32:ALA:HB1	1.84	0.60	
45:a:359:U:C6	45:a:920:A:C2	2.90	0.60	
1:H:1591:GLU:O	1:H:1595:ILE:HG23	2.02	0.59	
1:D:997:LEU:HD21	1:D:1008:VAL:HG21	1.83	0.59	
32:Q:105:ARG:NH2	45:a:1412:G:OP1	2.34	0.59	
1:D:1013:PHE:CE2	1:D:1083:LYS:HA	2.36	0.59	
45:a:2435:G:N2	45:a:2513:U:O4	2.35	0.59	
1:E:997:LEU:HD21	1:E:1008:VAL:HG21	1.83	0.59	
42:3:35:VAL:HG21	42:3:244:LEU:HD21	1.84	0.59	
1:D:994:LEU:HG	1:E:1004:TRP:CH2	2.38	0.58	
45:a:1110:U:H2'	45:a:1111:U:C6	2.38	0.58	
45:a:2108:C:H1'	45:a:3344:A:C8	2.39	0.58	
1:D:1446:ILE:HB	1:D:1469:LYS:HB3	1.86	0.57	
1:C:818:GLN:NE2	1:E:991:LYS:NZ	2.51	0.57	
24:y:34:SER:OG	45:a:3085:G:OP1	2.20	0.56	
44:c:128:ARG:NH2	45:a:2177:G:OP2	2.38	0.56	
10:i:6:THR:HG21	10:i:65:VAL:HG22	1.88	0.56	
1:D:1000:PRO:HA	1:D:1005:GLN:CD	2.27	0.56	
13:m:36:ARG:NH2	45:a:687:U:OP2	2.39	0.56	
11:j:22:TYR:CZ	45:a:1048:A:H2'	2.41	0.56	
1:D:1336:PRO:HB3	1:E:1023:ILE:HD13	1.87	0.55	
1:E:1000:PRO:HA	1:E:1005:GLN:CD	2.26	0.55	
30:N:76:GLU:OE1	30:N:76:GLU:N	2.39	0.55	
18:r:93:ILE:HG22	45:a:784:A:C6	2.42	0.55	
1:D:1467:LYS:HA	1:D:1478:ASP:HA	1.88	0.55	
45:a:1108:U:H2'	45:a:1109:U:C6	2.42	0.55	
13:m:123:ILE:HG22	34:T:118:ILE:HG22	1.89	0.55	

	t i c	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:1105:ASN:HA	1:E:1030:PRO:HG3	1.88	0.55	
38:X:45:ARG:HH11	38:X:45:ARG:CG	2.18	0.55	
1:C:818:GLN:NE2	1:E:991:LYS:HZ1	2.05	0.55	
1:D:1109:ILE:HD11	1:E:1037:ASN:CB	2.37	0.54	
8:g:47:ARG:NH1	8:g:183:ASP:OD2	2.40	0.54	
27:K:52:LYS:O	27:K:65:ARG:NE	2.37	0.54	
25:z:105:VAL:HG11	25:z:135:ILE:HD13	1.89	0.54	
1:D:1148:GLU:HG2	1:E:1426:ARG:HD3	1.90	0.54	
9:h:36:ILE:HD13	44:c:35:ALA:HA	1.88	0.54	
45:a:999:G:C6	45:a:1000:C:N4	2.76	0.54	
16:p:79:ILE:HG21	16:p:138:LEU:HD11	1.90	0.53	
36:V:45:ARG:NH2	45:a:361:A:O3'	2.41	0.53	
45:a:2193:U:H5'	45:a:2194:G:H5'	1.90	0.53	
32:Q:76:VAL:HG11	32:Q:94:ALA:HB1	1.91	0.53	
16:p:61:ALA:HA	16:p:70:PRO:HD2	1.90	0.53	
1:C:601:GLU:H	1:E:1197:ALA:C	2.16	0.53	
1:D:1037:ASN:CB	1:E:1109:ILE:HD11	2.40	0.52	
1:D:1004:TRP:HH2	1:E:994:LEU:HG	1.73	0.52	
44:c:197:PRO:HB2	45:a:2147:A:O3'	2.10	0.52	
1:D:1004:TRP:CH2	1:E:994:LEU:HG	994:LEU:HG 2.43		
7:f:96:VAL:HG13	7:f:141:VAL:HG23	1.91	0.52	
43:S:20:ILE:HD11	43:S:34:HIS:CE1 2.44		0.52	
45:a:1011:A:C2	45:a:1040:A:C2	2.97	0.52	
42:3:72:ALA:O	42:3:76:ARG:NH1	2.43	0.52	
12:k:105:GLY:HA3	45:a:2674:A:H5"	1.91	0.51	
1:D:1070:PRO:HG3	1:E:1017:TYR:CG	2.46	0.51	
45:a:3278:C:H2'	45:a:3278:C:O2	2.09	0.51	
1:D:1037:ASN:HB2	1:E:1109:ILE:HD11	1.92	0.51	
45:a:2108:C:H1'	45:a:3344:A:H8	1.73	0.51	
45:a:1134:G:O2'	45:a:2642:A:N3	2.38	0.51	
27:K:135:ARG:NH1	45:a:1808:G:OP1	2.44	0.51	
13:m:85:LEU:N	13:m:85:LEU:HD23	2.26	0.51	
42:3:156:LEU:HD23	42:3:159:ILE:HD12	1.92	0.51	
1:E:1013:PHE:CD1	1:E:1083:LYS:HE2	2.45	0.51	
45:a:2405:C:O2	45:a:2819:A:N1	2.43	0.51	
1:C:600:GLU:HA	1:E:1197:ALA:CA	2.41	0.50	
15:0:193:ARG:O	15:0:196:THR:HG22	2.11	0.50	
20:t:132:THR:O	20:t:133:ALA:HB3	2.11	0.50	
42:3:60:THR:OG1	42:3:61:SER:N	2.44	0.50	
1:D:1336:PRO:HB3	1:E:1023:ILE:CD1	2.41	0.50	
6:e:201:GLY:O	6:e:202:GLY:C	2.53	0.50	

	la pagem	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
34:T:10:ARG:NH1	34:T:60:GLU:OE1	2.45	0.50	
1:E:1013:PHE:CG	1:E:1083:LYS:HE2	2.47	0.50	
23:w:85:TRP:CE2	23:w:93:LEU:HD21	2.47	0.50	
26:J:82:VAL:HB	26:J:85:VAL:HG13	1.92	0.50	
45:a:2270:A:H2'	45:a:2271:A:C8	2.47	0.50	
45:a:3278:C:O2	45:a:3278:C:C2'	2.59	0.50	
1:D:1013:PHE:CZ	1:D:1082:ASP:C	2.90	0.50	
1:D:1405:ASP:HA	1:D:1426:ARG:HH22	1.77	0.50	
5:d:250:ALA:HB3	45:a:2880:U:H1'	1.94	0.50	
34:T:7:TYR:CE1	34:T:8:GLU:HG3	2.47	0.50	
18:r:94:PHE:CZ	28:L:119:PRO:HD3	2.46	0.50	
45:a:2512:C:O2	45:a:2513:U:O4	2.30	0.50	
16:p:69:GLY:HA2	16:p:70:PRO:C	2.37	0.49	
45:a:86:G:O2'	45:a:98:G:O6	2.23	0.49	
1:H:1595:ILE:HD13	1:H:1610:LYS:HB3	1.92	0.49	
9:h:48:ARG:NH2	45:a:2526:C:C2	2.80	0.49	
45:a:1912:U:N3	45:a:2122:G:OP2	2.44	0.49	
45:a:627:U:H4'	45:a:1399:A:H1'	1.94	0.49	
1:C:848:ASN:OD1	1:E:991:LYS:CE	2.60	0.49	
1:D:1022:ASP:OD1	1:E:1100:ARG:NH1	2.42	0.49	
41:0:4:ARG:NH1	45:a:837:A:OP2	2.41	0.49	
32:Q:47:ARG:NH1	45:a:634:C:O3'	2.46	0.49	
45:a:3217:C:O2	45:a:3217:C:C2'	2.61	0.49	
45:a:2512:C:O2	45:a:2513:U:C4	2.66	0.49	
5:d:165:GLN:OE1	5:d:167:ARG:NH2	2.45	0.48	
5:d:54:THR:OG1	5:d:55:THR:N	2.41	0.48	
16:p:12:LYS:O	20:t:167:ARG:NH2	2.45	0.48	
17:q:67:ILE:HD11	45:a:1447:G:H3'	1.93	0.48	
6:e:55:PHE:CE2	6:e:158:ARG:HG3	2.48	0.48	
41:0:49:ARG:NH2	45:a:1793:C:OP2	2.46	0.48	
1:D:1489:GLN:O	1:D:1490:GLN:C	2.56	0.48	
5:d:291:GLU:O	5:d:292:ALA:HB3	2.13	0.48	
15:0:47:LYS:HE3	15:0:51:LEU:HD11	1.96	0.48	
25:z:90:ALA:HA	25:z:94:GLN:OE1	2.14	0.48	
1:I:1589:ARG:HH21	1:I:1591:GLU:HG3	1.79	0.48	
1:D:1009:ARG:CD	1:D:1085:GLY:CA	2.92	0.48	
1:C:604:VAL:CG2	1:E:1227:ASN:HD22	2.27	0.48	
45:a:1108:U:H2'	45:a:1109:U:H6	1.78	0.48	
1:D:1479:LEU:HB3	1:D:1483:GLU:HB2	1.96	0.48	
8:g:141:TYR:HA	8:g:189:ILE:HD12	1.96	0.48	
8:g:197:GLN:OE1	8:g:197:GLN:N	2.45	0.48	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
45:a:950:G:H5'	45:a:971:G:OP1	2.14	0.47	
45:a:2282:U:O2	45:a:2310:U:H4'	2.13	0.47	
3:4:102:U:O4	36:V:65:ARG:NH2	2.46	0.47	
10:i:161:LEU:O	10:i:164:ILE:HG22	2.14	0.47	
45:a:1596:C:H2'	45:a:1597:C:C6	2.49	0.47	
45:a:2960:C:H2'	45:a:2961:G:C8	2.50	0.47	
16:p:58:LEU:HD11	16:p:74:ARG:NH1	2.29	0.47	
45:a:1498:A:H2'	45:a:1499:C:C6	2.50	0.47	
45:a:1560:G:C2	45:a:1580:A:N1	2.82	0.47	
8:g:136:TYR:CE2	8:g:231:ASN:HB2	2.49	0.47	
25:z:49:LYS:O	25:z:51:VAL:N	2.48	0.47	
28:L:104:THR:HG21	28:L:112:ILE:HD11	1.96	0.47	
11:j:209:ASN:O	11:j:212:GLU:O	2.33	0.47	
42:3:91:GLY:O	42:3:94:CYS:N	2.46	0.47	
43:S:57:LEU:HB3	43:S:61:GLN:HB2	1.96	0.47	
45:a:1778:G:O2'	45:a:1780:G:OP2	2.27	0.47	
45:a:2592:G:H4'	45:a:2594:C:C2	2.49	0.47	
6:e:148:ILE:HG23	6:e:151:GLN:HB3	1.96	0.47	
9:h:26:LEU:HD13	27:K:66:THR:HG21	1.96	0.47	
21:u:136:ARG:HD2	21:u:139:ARG:HH12	1.79	0.47	
23:w:87:ARG:HH22	23:w:137:VAL:CG2	2.25	0.47	
42:3:304:GLN:O	42:3:305:ALA:HB3	2.15	0.47	
1:D:1411:ILE:HD13	1:D:1466:LEU:HD21	1.96	0.47	
6:e:93:THR:CG2	6:e:158:ARG:HH21	2.28	0.47	
44:c:82:VAL:HA	44:c:86:GLN:OE1	2.15	0.47	
45:a:1913:A:N3	45:a:2120:A:H2'	2.29	0.47	
1:D:1013:PHE:CD1	1:D:1083:LYS:HE2	2.49	0.47	
1:C:848:ASN:ND2	1:E:991:LYS:HE2	2.29	0.47	
44:c:113:VAL:HG23	44:c:134:VAL:HG22	1.97	0.47	
11:j:43:VAL:HG21	11:j:197:VAL:HB	1.97	0.46	
22:v:36:TYR:CE1	22:v:40:HIS:CE1	3.03	0.46	
19:s:98:ARG:NH2	19:s:130:ASN:OD1	2.48	0.46	
45:a:1764:U:H3'	45:a:1765:U:H4'	1.97	0.46	
1:E:1439:GLN:NE2	45:a:3027:A:O2'	2.40	0.46	
45:a:662:U:H2'	45:a:663:C:C6	2.51	0.46	
45:a:828:A:H2'	45:a:829:U:C6	2.51	0.46	
1:C:600:GLU:OE2	1:C:617:ARG:NH1	2.42	0.46	
6:e:178:ASN:HA	6:e:183:TRP:CD2	2.51	0.46	
45:a:2635:A:H4'	45:a:2636:A:O5'	2.15	0.46	
16:p:83:ALA:O	45:a:1312:C:O2'	2.33	0.46	
45:a:1750:A:N3	45:a:1752:A:C8	2.83	0.46	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:4:52:A:N6	38:X:27:ILE:HD13	2.31	0.46	
5:d:106:TRP:HB2	5:d:133:TYR:CE2	2.51	0.46	
22:v:33:TYR:CZ	22:v:37:LEU:HD21	2.51	0.46	
36:V:5:THR:N	36:V:6:PRO:CD	2.79	0.46	
16:p:127:LEU:HD11	20:t:168:PRO:HG3	1.98	0.46	
38:X:23:LEU:HD11	38:X:35:ILE:HG22	1.98	0.46	
42:3:317:PRO:O	42:3:318:LEU:CB	2.64	0.46	
44:c:80:GLU:HG3	44:c:170:ALA:HA	1.98	0.46	
45:a:2946:A:H5"	45:a:2947:G:H5'	1.98	0.46	
10:i:67:ALA:O	10:i:70:THR:HG22	2.16	0.46	
11:j:36:LEU:HD11	11:j:69:ARG:HD3	1.97	0.46	
32:Q:20:HIS:CG	32:Q:42:VAL:HG21	2.51	0.46	
41:0:42:CYS:SG	41:0:59:CYS:SG	3.14	0.46	
1:D:1416:TRP:O	1:E:1053:LYS:HE3	2.16	0.45	
1:E:1195:ASP:OD2	1:E:1197:ALA:HB3	2.16	0.45	
3:4:25:G:N3	45:a:345:G:O2'	2.46	0.45	
38:X:45:ARG:HH11	38:X:45:ARG:HG3	1.81	0.45	
45:a:1555:U:H3'	45:a:1556:C:H5'	1.98	0.45	
45:a:2946:A:C5'	45:a:2947:G:H5'	2.46	0.45	
45:a:3375:A:O2'	45:a:3378:C:OP2	2.34	0.45	
27:K:83:THR:HG22	43:S:93:PHE:CZ	2.51	0.45	
33:R:42:GLN:HE22	45:a:583:G:H21	1.63	0.45	
45:a:2902:A:H2'	45:a:2903:A:O4'	2.16	0.45	
10:i:26:LYS:HB2	45:a:3198:U:O4	2.17	0.45	
32:Q:100:ILE:O	32:Q:105:ARG:NH1	2.49	0.45	
1:D:1470:LYS:O	1:D:1471:LEU:C	2.60	0.45	
6:e:120:LYS:O	6:e:248:ARG:NH2	2.47	0.45	
12:k:32:ARG:NH1	12:k:120:ILE:O	2.47	0.45	
45:a:1307:G:C2	45:a:1308:A:C2	3.05	0.45	
6:e:93:THR:HG22	6:e:158:ARG:HH21	1.80	0.45	
44:c:183:GLY:O	44:c:186:PHE:HB3	2.16	0.45	
1:C:818:GLN:HE22	1:E:991:LYS:HZ1	1.64	0.45	
1:C:848:ASN:CG	1:E:991:LYS:HE2	2.41	0.45	
3:4:95:G:OP2	36:V:72:ARG:NH1	2.49	0.45	
4:b:121:U:O2	4:b:121:U:O4'	2.35	0.45	
5:d:376:LYS:NZ	45:a:3330:A:OP2	2.50	0.45	
10:i:40:HIS:CE1	10:i:41:ILE:HD11	2.52	0.45	
32:Q:94:ALA:O	32:Q:119:VAL:HA	2.17	0.45	
45:a:1468:A:N1	45:a:1880:U:O2'	2.48	0.45	
45:a:2651:G:C4	45:a:2796:G:C2	3.05	0.45	
8:g:140:SER:O	8:g:143:THR:HG22	2.17	0.45	

	na pagem	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
9:h:139:VAL:HG11	9:h:197:VAL:HG11	1.98	0.45	
27:K:26:VAL:HG11	27:K:96:VAL:HG13	1.99	0.44	
45:a:776:U:H5	45:a:2719:U:O2	2.00	0.44	
3:4:149:A:N3	9:h:55:TYR:OH	2.46	0.44	
8:g:98:LYS:N	8:g:99:PRO:HD2	2.32	0.44	
45:a:1129:A:C6	45:a:1130:A:C6	3.05	0.44	
10:i:12:VAL:HG23	10:i:16:VAL:HG22	2.00	0.44	
37:W:41:THR:HG21	37:W:62:ALA:HB1	1.99	0.44	
45:a:631:U:H2'	45:a:632:G:C8	2.53	0.44	
45:a:2180:G:H2'	45:a:2181:C:C6	2.52	0.44	
3:4:71:A:O2'	26:J:52:ARG:NH2	2.51	0.44	
28:L:79:TRP:CE3	28:L:82:ILE:HD12	2.53	0.44	
45:a:2268:U:H2'	45:a:2269:U:H5'	1.99	0.44	
45:a:2376:G:H2'	45:a:2377:G:C8	2.53	0.44	
1:C:623:ARG:NH2	1:D:1016:SER:HB3	2.30	0.44	
1:D:1404:LEU:HD13	1:D:1426:ARG:HG2	2.00	0.44	
36:V:65:ARG:HG3	36:V:65:ARG:HH11	1.82	0.44	
45:a:83:U:H2'	45:a:84:U:O4' 2.17		0.44	
45:a:1804:A:H2'	45:a:1805:C:O4'	2.18	0.44	
5:d:19:ARG:NH2	45:a:3045:G:OP1	2.51	0.44	
19:s:125:LYS:NZ	45:a:1724:U:O4	2.50	0.44	
44:c:191:LEU:HD21	45:a:1795:U:OP1	2.17	0.44	
45:a:370:U:H4'	45:a:404:G:H5'	2.00	0.44	
45:a:2836:C:O2	45:a:2836:C:O4'	2.36	0.44	
16:p:126:VAL:HG13	16:p:127:LEU:HD23	2.00	0.44	
45:a:595:G:H1	45:a:609:G:H5"	1.81	0.44	
45:a:776:U:C5	45:a:2719:U:O2	2.71	0.44	
4:b:62:U:O3'	6:e:285:ARG:NH1	2.51	0.44	
45:a:2694:A:C6	45:a:2695:A:C6	3.05	0.44	
7:f:46:ARG:HD3	45:a:3270:U:C4	2.53	0.43	
18:r:96:PHE:CD2	18:r:97:PRO:HD2	2.52	0.43	
45:a:595:G:N1	45:a:609:G:H5"	2.33	0.43	
1:D:1009:ARG:HD2	1:D:1085:GLY:CA	2.48	0.43	
13:m:2:ALA:HB1	45:a:797:U:H5"	2.00	0.43	
1:D:1489:GLN:HA	1:D:1493:GLY:HA3	1.99	0.43	
9:h:34:PHE:CD2	9:h:42:PRO:HD3	2.53	0.43	
15:0:125:SER:HB3	45:a:2433:U:H1'	2.01	0.43	
45:a:741:U:H2'	45:a:742:G:O4'	2.18	0.43	
45:a:1495:U:C5	45:a:1835:A:N1	2.81	0.43	
45:a:2427:U:H2'	45:a:2428:U:C6	2.53	0.43	
45:a:2966:G:C6	45:a:2967:A:C6	3.06	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
8:g:138:TYR:CD2	8:g:233:GLU:HA	2.53	0.43	
45:a:3306:U:O2	45:a:3306:U:O5'	2.36	0.43	
1:C:811:GLU:CD	1:C:814:ARG:HH21	2.25	0.43	
1:D:1473:THR:O	1:D:1474:ASN:C	2.61	0.43	
20:t:78:TRP:CZ3	20:t:125:LYS:HE3	2.54	0.43	
21:u:65:TYR:CE2	21:u:73:GLY:HA3	2.53	0.43	
26:J:52:ARG:O	26:J:70:ILE:O	2.37	0.43	
5:d:27:ALA:HB3	5:d:218:ILE:HG22	2.00	0.43	
8:g:173:LEU:HB3	8:g:178:ILE:HB	2.00	0.43	
11:j:208:ASN:C	11:j:208:ASN:OD1	2.62	0.43	
1:E:997:LEU:O	1:E:1005:GLN:NE2	2.52	0.43	
3:4:52:A:H62	38:X:27:ILE:HD13	1.83	0.43	
15:0:172:ARG:CZ	15:0:174:ILE:CD1	2.97	0.43	
27:K:16:GLY:O	27:K:19:ALA:N	2.51	0.43	
38:X:9:ILE:HD12	38:X:51:ILE:HG23	2.00	0.43	
45:a:900:G:H1'	45:a:1589:A:N6	2.34	0.43	
45:a:1449:A:C2	45:a:2356:A:C4	3.07	0.43	
45:a:1724:U:H1'	45:a:1725:C:C6	2.54	0.43	
45:a:3343:G:H21	45:a:3362:A:H2	1.66	0.43	
8:g:130:ILE:HD12	8:g:134:VAL:HG11	2.01	0.43	
40:Z:72:LEU:HD11	40:Z:83:LEU:HD12	2.00	0.43	
42:3:202:ARG:HA	42:3:202:ARG:NE	2.33	0.43	
45:a:1084:A:C6	45:a:1085:A:C6	3.07	0.43	
45:a:2513:U:O2	45:a:2513:U:C2'	2.66	0.43	
5:d:47:LEU:N	5:d:47:LEU:HD22	2.34	0.43	
15:0:5:LYS:NZ	45:a:266:A:OP1	2.52	0.43	
33:R:2:ALA:N	45:a:3219:G:N7	2.67	0.43	
45:a:241:G:C6	45:a:242:C:C4	3.06	0.43	
1:D:1067:PRO:HD3	1:E:1025:PHE:CE1	2.53	0.42	
1:D:1394:VAL:HG13	1:D:1447:LEU:HD13	2.01	0.42	
3:4:104:A:C8	3:4:105:A:C8	3.07	0.42	
5:d:246:LEU:HD12	5:d:246:LEU:C	2.44	0.42	
21:u:27:LEU:O	21:u:28:SER:C	2.62	0.42	
1:D:1395:LEU:HB2	1:D:1443:ILE:HG21	2.01	0.42	
1:D:1398:SER:HB2	1:D:1449:ILE:HB	2.01	0.42	
5:d:124:LYS:NZ	45:a:3297:U:O4	2.52	0.42	
21:u:106:LEU:HA	21:u:109:VAL:HG22	2.02	0.42	
44:c:224:THR:HA	44:c:237:LEU:O	2.19	0.42	
45:a:2689:A:H2'	45:a:2689:A:N3	2.35	0.42	
1:D:997:LEU:O	1:D:1005:GLN:NE2	2.52	0.42	
6:e:40:HIS:CE1	6:e:42:ALA:HB3	2.55	0.42	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
18:r:170:ARG:O	18:r:171:LYS:HB2	2.19	0.42	
29:M:47:LEU:HA	29:M:50:THR:HG22	2.01	0.42	
45:a:2116:G:C2	45:a:3064:U:H5'	2.55	0.42	
45:a:2617:U:O2	45:a:2617:U:O5'	2.37	0.42	
1:C:600:GLU:HA	1:E:1197:ALA:O	2.19	0.42	
3:4:53:A:C2	38:X:35:ILE:HD11	2.55	0.42	
9:h:68:ARG:HD2	9:h:237:ILE:O	2.19	0.42	
28:L:21:ARG:HD2	45:a:1369:A:H5"	2.00	0.42	
31:O:10:ARG:HB2	31:O:12:TYR:CE2	2.54	0.42	
32:Q:32:TRP:CZ2	32:Q:53:PRO:HD2	2.54	0.42	
45:a:2112:U:H4'	45:a:2113:A:O5'	2.19	0.42	
45:a:2966:G:C6	45:a:2967:A:N6	2.87	0.42	
5:d:227:GLU:HG2	5:d:270:ARG:HD3	2.02	0.42	
6:e:83:LEU:N	6:e:84:PRO:CD	2.83	0.42	
16:p:48:PHE:CE1	45:a:1191:U:C2	3.08	0.42	
45:a:669:U:H2'	45:a:670:C:O4'	2.20	0.42	
45:a:1235:U:H4'	45:a:1236:G:H5'	2.02	0.42	
1:C:809:ARG:HA	1:C:812:TYR:CE1	2.55	0.42	
42:3:315:LYS:HB2	42:3:323:VAL:HG21	2.02	0.42	
45:a:1146:C:H4'	45:a:1331:U:C4	2.54	0.42	
45:a:1326:A:H2'	45:a:1327:C:O4'	2.19	0.42	
45:a:3016:A:H2'	45:a:3017:A:C8	:a:3017:A:C8 2.55		
1:D:1013:PHE:CD1	1:D:1083:LYS:CG	2.98	0.42	
1:E:1005:GLN:OE1	1:E:1009:ARG:NH1	2.52	0.42	
42:3:44:LYS:HB3	42:3:47:ARG:HH11	1.83	0.42	
44:c:206:PRO:HG3	44:c:213:GLY:HA3	2.00	0.42	
45:a:94:G:C2'	45:a:95:A:O5'	2.67	0.42	
45:a:1064:A:O4'	45:a:1066:G:C8	2.73	0.42	
45:a:1915:A:H2'	45:a:1916:U:C6	2.55	0.42	
16:p:22:VAL:HG11	16:p:120:VAL:HG11	2.02	0.42	
38:X:2:ALA:CB	45:a:1492:G:N7	2.83	0.42	
42:3:198:ARG:HB3	42:3:199:TRP:CD1	2.54	0.42	
45:a:951:A:C4	45:a:1369:A:C2	3.07	0.42	
45:a:1008:U:C2	45:a:1043:C:C2	3.08	0.42	
15:0:80:THR:HG21	15:0:86:ASN:O	2.20	0.42	
20:t:45:LEU:O	20:t:48:LEU:N	2.45	0.42	
41:0:49:ARG:HG2	41:0:49:ARG:HH11	1.85	0.42	
42:3:22:LEU:HD22	42:3:26:PHE:CD2	2.55	0.42	
1:H:1573:ILE:HD11	1:I:1652:SER:HB3	2.02	0.42	
1:H:1595:ILE:HD11	1:H:1611:VAL:CG2	2.46	0.42	
4:b:113:C:H2'	4:b:114:U:O4'	2.20	0.42	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
5:d:256:HIS:HA	5:d:257:PRO:C	2.44	0.42	
5:d:266:ARG:HG2	5:d:266:ARG:NH1	2.31	0.42	
8:g:84:VAL:HG23	8:g:117:VAL:HB	2.01	0.42	
10:i:136:PHE:CE1	10:i:144:ILE:HD12	2.54	0.42	
12:k:139:THR:HG22	12:k:147:THR:HA	2.01	0.42	
42:3:99:MET:HE2	45:a:1429:G:C6	2.54	0.42	
45:a:537:A:H2'	45:a:538:G:O4'	2.20	0.42	
1:D:1424:MET:HE2	1:E:1151:PHE:CZ	2.55	0.41	
5:d:331:ASN:OD1	5:d:331:ASN:N	2.52	0.41	
33:R:21:ARG:O	45:a:634:C:H5'	2.20	0.41	
36:V:31:LYS:O	36:V:32:LYS:C	2.63	0.41	
45:a:345:G:OP1	45:a:1429:G:N1	2.46	0.41	
45:a:2836:C:O2	45:a:2836:C:O5'	2.37	0.41	
1:H:1566:ALA:HB1	1:I:1582:ILE:HG21	2.01	0.41	
1:D:1414:THR:O	1:D:1418:GLN:HG2	2.20	0.41	
3:4:62:C:H4'	3:4:63:G:O5'	2.20	0.41	
36:V:3:LYS:HE2	45:a:2139:A:C4	2.55	0.41	
1:E:1061:ALA:N	1:E:1062:PRO:CD	2.83	0.41	
18:r:83:VAL:O	18:r:103:ALA:HA	2.21	0.41	
45:a:2611:U:H2'	45:a:2612:U:C6	2.55	0.41	
1:D:1009:ARG:CD	1:D:1085:GLY:HA3	2.51	0.41	
13:m:105:ASN:OD1	13:m:105:ASN:C	2.64	0.41	
44:c:30:ARG:HH11	44:c:36:GLU:HG3	1.85	0.41	
44:c:199:THR:HG21	45:a:914:A:C8	2.55	0.41	
45:a:64:G:C6	45:a:322:U:C5	3.07	0.41	
45:a:1469:C:N3	45:a:1508:C:N3	2.68	0.41	
21:u:4:SER:OG	45:a:2630:C:H3'	2.21	0.41	
1:D:1468:ILE:HD11	1:D:1484:PHE:HB2	2.03	0.41	
5:d:163:HIS:HA	5:d:177:HIS:O	2.20	0.41	
45:a:507:U:O2'	45:a:1166:G:H4'	2.20	0.41	
45:a:1225:A:C2	45:a:3116:G:C4	3.08	0.41	
1:C:848:ASN:CG	1:E:991:LYS:NZ	2.78	0.41	
1:D:1404:LEU:HA	1:D:1408:GLY:HA3	2.03	0.41	
3:4:75:G:OP2	26:J:74:TYR:OH	2.37	0.41	
18:r:150:VAL:HA	18:r:153:PHE:CD1	2.56	0.41	
45:a:428:A:H2'	45:a:429:U:C6	2.56	0.41	
1:D:1435:VAL:HG22	1:D:1446:ILE:HD13	2.03	0.41	
15:0:94:TYR:CE2	15:0:96:ARG:HB2	2.56	0.41	
17:q:94:LEU:HD12	17:q:94:LEU:HA	1.97	0.41	
18:r:34:THR:HA	18:r:49:LEU:HD22	2.02	0.41	
35:U:60:LEU:O	35:U:64:SER:N	2.53	0.41	

	h a	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
41:0:56:THR:HG22	41:0:63:THR:HG23	2.01	0.41	
45:a:304:G:H5'	45:a:304:G:N3	2.36	0.41	
1:D:1061:ALA:N	1:D:1062:PRO:CD	2.83	0.41	
1:D:1403:LEU:HD13	1:D:1407:ILE:HD12	2.03	0.41	
6:e:119:TYR:OH	6:e:139:PRO:O	2.36	0.41	
9:h:27:THR:HG22	45:a:2563:G:H5"	2.02	0.41	
9:h:36:ILE:HD13	44:c:35:ALA:CA	2.51	0.41	
14:n:55:ARG:NH2	14:n:76:ALA:O	2.53	0.41	
16:p:23:VAL:HG11	16:p:84:LEU:HD11	2.02	0.41	
27:K:5:LEU:HD22	30:N:35:ARG:HD2	2.01	0.41	
40:Z:72:LEU:HD11	40:Z:83:LEU:CD1	2.50	0.41	
45:a:996:A:C2	45:a:1054:A:C4	3.09	0.41	
45:a:1948:G:C2	45:a:2099:A:C2	3.09	0.41	
45:a:2663:G:H2'	45:a:2664:C:O4'	2.21	0.41	
45:a:3055:U:H1'	45:a:3057:U:OP2	2.21	0.41	
45:a:3228:C:H4'	45:a:3229:G:O5'	2.21	0.41	
45:a:3294:A:H2'	45:a:3295:A:O4'	2.20	0.41	
16:p:85:ARG:NH2	45:a:2383:C:OP2	2.54	0.41	
17:q:61:ARG:O	17:q:64:ASN:ND2	2.53	0.41	
38:X:28:ARG:HA	38:X:33:ASN:ND2 2.36		0.41	
45:a:1926:C:H5'	45:a:1927:G:C8	2.56	0.41	
3:4:102:U:C4	3:4:103:G:C6	3.09	0.40	
41:0:79:VAL:O	41:0:82:THR:HG22	2.21	0.40	
44:c:65:ASP:HB3	44:c:68:LYS:O	2.20	0.40	
45:a:1520:G:H2'	45:a:1521:G:O4'	2.21	0.40	
45:a:1648:A:H2'	45:a:1649:U:O4'	2.21	0.40	
45:a:3131:U:O2	45:a:3131:U:H2'	2.20	0.40	
1:C:654:TYR:CE1	1:E:991:LYS:NZ	2.88	0.40	
1:D:1012:LEU:HB3	1:E:1081:LEU:HD22	2.03	0.40	
18:r:144:ARG:NH2	45:a:976:U:OP1	2.53	0.40	
18:r:170:ARG:O	18:r:171:LYS:CB	2.69	0.40	
24:y:16:GLY:O	45:a:3050:U:O2'	2.40	0.40	
31:O:29:ALA:HB3	31:O:30:PRO:HD3	2.02	0.40	
35:U:76:ARG:HA	35:U:76:ARG:NE	2.36	0.40	
1:D:1005:GLN:OE1	1:D:1009:ARG:NH1	2.53	0.40	
34:T:86:ARG:CZ	34:T:90:ARG:HH12	2.35	0.40	
34:T:90:ARG:NH1	45:a:20:A:OP2	2.54	0.40	
35:U:74:LYS:HA	35:U:83:ALA:HB2	2.02	0.40	
45:a:2144:A:H1'	45:a:2281:A:N6	2.37	0.40	
45:a:2167:A:C6	45:a:2168:A:N1	2.89	0.40	
45:a:3088:G:H2'	45:a:3089:C:O4'	2.21	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:D:1009:ARG:HD2	1:D:1085:GLY:HA2	2.03	0.40	
3:4:93:U:H2'	3:4:94:C:O4'	2.21	0.40	
7:f:51:ARG:NH1	14:n:114:ASP:OD2	2.54	0.40	
44:c:21:ARG:HD3	45:a:824:C:H5"	2.04	0.40	
45:a:996:A:H2'	45:a:997:A:O4'	2.22	0.40	
45:a:3127:A:C2'	45:a:3128:G:O5'	2.70	0.40	
9:h:36:ILE:HD13	44:c:35:ALA:CB	2.52	0.40	
42:3:42:VAL:HA	42:3:45:ASN:ND2	2.36	0.40	
44:c:40:TYR:O	45:a:2550:U:H5	2.04	0.40	
45:a:1194:G:H2'	45:a:1195:A:C8	2.56	0.40	
45:a:2667:A:C2	45:a:2690:G:C4	3.10	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	320/1659~(19%)	314~(98%)	6 (2%)	0	100	100
1	С	253/1659~(15%)	245~(97%)	7 (3%)	1 (0%)	30	63
1	D	468/1659~(28%)	440 (94%)	26~(6%)	2(0%)	30	63
1	Е	467/1659~(28%)	459 (98%)	8 (2%)	0	100	100
1	Н	100/1659~(6%)	100 (100%)	0	0	100	100
1	Ι	104/1659~(6%)	104 (100%)	0	0	100	100
2	Р	13/25~(52%)	13 (100%)	0	0	100	100
5	d	384/387~(99%)	362 (94%)	21~(6%)	1 (0%)	37	68
6	е	289/297~(97%)	273~(94%)	14 (5%)	2(1%)	19	51
7	f	$15\overline{2}/176~(86\%)$	143 (94%)	9(6%)	0	100	100
8	g	216/244 (88%)	210 (97%)	6 (3%)	0	100	100

\mathbf{Mol}	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
9	h	231/256~(90%)	219 (95%)	12 (5%)	0	100	100
10	i	189/191~(99%)	180 (95%)	9(5%)	0	100	100
11	j	206/221~(93%)	193 (94%)	12 (6%)	1 (0%)	25	58
12	k	164/174~(94%)	155~(94%)	7 (4%)	2 (1%)	11	38
13	m	191/199~(96%)	178~(93%)	13~(7%)	0	100	100
14	n	134/138~(97%)	126~(94%)	8 (6%)	0	100	100
15	О	201/204~(98%)	188 (94%)	13~(6%)	0	100	100
16	р	195/199~(98%)	187~(96%)	8 (4%)	0	100	100
17	q	181/184~(98%)	166~(92%)	14 (8%)	1 (1%)	22	53
18	r	183/186~(98%)	170 (93%)	12 (7%)	1 (0%)	25	58
19	\mathbf{S}	153/189~(81%)	148~(97%)	5(3%)	0	100	100
20	t	168/172~(98%)	156~(93%)	11 (6%)	1 (1%)	22	53
21	u	157/160~(98%)	147 (94%)	9~(6%)	1 (1%)	22	53
22	v	98/121~(81%)	88 (90%)	10 (10%)	0	100	100
23	W	134/137~(98%)	129 (96%)	5 (4%)	0	100	100
24	У	61/155~(39%)	60~(98%)	1 (2%)	0	100	100
25	Z	119/142~(84%)	111 (93%)	7 (6%)	1 (1%)	16	48
26	J	124/127~(98%)	120 (97%)	4 (3%)	0	100	100
27	К	125/136~(92%)	118 (94%)	6 (5%)	1 (1%)	16	48
28	L	146/149~(98%)	135~(92%)	11 (8%)	0	100	100
29	М	56/59~(95%)	51 (91%)	5 (9%)	0	100	100
30	Ν	95/105~(90%)	91 (96%)	4 (4%)	0	100	100
31	Ο	107/113~(95%)	100 (94%)	7 (6%)	0	100	100
32	Q	125/130~(96%)	121 (97%)	4 (3%)	0	100	100
33	R	104/107~(97%)	99~(95%)	5 (5%)	0	100	100
34	Т	115/120~(96%)	109 (95%)	6 (5%)	0	100	100
35	U	97/100~(97%)	87 (90%)	9 (9%)	1 (1%)	13	42
36	V	85/88~(97%)	78 (92%)	6 (7%)	1 (1%)	11	38
37	W	75/78~(96%)	70 (93%)	5 (7%)	0	100	100
38	Х	48/51~(94%)	44 (92%)	3 (6%)	1 (2%)	5	25
39	Y	50/128~(39%)	47 (94%)	2(4%)	1 (2%)	6	26

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
40	Ζ	103/106~(97%)	92~(89%)	8 (8%)	3~(3%)	3	20
41	0	89/92~(97%)	81 (91%)	5~(6%)	3~(3%)	3	17
42	3	352/362~(97%)	324~(92%)	24 (7%)	4 (1%)	12	39
43	S	110/121~(91%)	106~(96%)	4 (4%)	0	100	100
44	с	244/254~(96%)	224 (92%)	17 (7%)	3~(1%)	11	38
All	All	7781/16537~(47%)	7361 (95%)	388 (5%)	32 (0%)	32	63

All (32) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
6	е	202	GLY
18	r	171	LYS
36	V	85	LYS
12	k	55	ARG
17	q	66	SER
20	t	154	HIS
41	0	18	TYR
42	3	90	PHE
1	D	1478	ASP
5	d	139	GLN
11	j	218	ALA
12	k	167	TYR
25	Z	50	ALA
38	Х	3	ALA
1	D	1474	ASN
27	Κ	103	GLN
35	U	97	SER
40	Ζ	94	GLY
41	0	51	ALA
42	3	132	ALA
44	с	125	ALA
44	с	143	GLU
44	с	180	LEU
6	е	292	ALA
39	Y	79	GLU
40	Ζ	96	GLU
42	3	5	GLN
21	u	125	ALA
40	Z	17	CYS
1	С	940	ILE

Continued from previous page...

Mol	Chain	Res	Type
42	3	192	GLY
41	0	12	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{ntiles}
1	А	294/1520~(19%)	291~(99%)	3~(1%)	73	86
1	\mathbf{C}	232/1520~(15%)	230~(99%)	2(1%)	75	88
1	D	429/1520~(28%)	424 (99%)	5 (1%)	67	83
1	Ε	428/1520~(28%)	427 (100%)	1 (0%)	92	96
1	Н	94/1520~(6%)	90~(96%)	4 (4%)	25	55
1	Ι	96/1520~(6%)	87 (91%)	9 (9%)	7	27
2	Р	14/23~(61%)	14 (100%)	0	100	100
5	d	320/323~(99%)	312 (98%)	8 (2%)	42	69
6	е	240/245~(98%)	233~(97%)	7 (3%)	37	65
7	f	134/153~(88%)	131 (98%)	3 (2%)	47	71
8	g	183/205~(89%)	179 (98%)	4 (2%)	47	71
9	h	187/208~(90%)	184 (98%)	3 (2%)	58	79
10	i	171/171~(100%)	163~(95%)	8 (5%)	22	52
11	j	177/187~(95%)	174 (98%)	3~(2%)	56	78
12	k	144/150~(96%)	140 (97%)	4(3%)	38	66
13	m	154/159~(97%)	150~(97%)	4 (3%)	41	68
14	n	107/109~(98%)	107 (100%)	0	100	100
15	О	175/176~(99%)	174 (99%)	1 (1%)	84	91
16	р	160/162~(99%)	158 (99%)	2 (1%)	65	82
17	q	140/146~(96%)	133~(95%)	7(5%)	20	50
18	r	150/151~(99%)	150 (100%)	0	100	100
19	s	128/154 (83%)	127 (99%)	1 (1%)	79	89

Continued	from	previous	page
Contentaca	<i>J</i> 10110	precious	page

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
20	\mathbf{t}	155/156~(99%)	151~(97%)	4(3%)	41	68
21	u	136/137~(99%)	135~(99%)	1 (1%)	81	90
22	V	87/107~(81%)	85~(98%)	2(2%)	45	70
23	W	104/105~(99%)	100 (96%)	4 (4%)	28	59
24	У	55/129~(43%)	54 (98%)	1 (2%)	54	76
25	Z	104/118 (88%)	101 (97%)	3(3%)	37	65
26	J	109/110~(99%)	106 (97%)	3(3%)	38	66
27	Κ	110/116~(95%)	110 (100%)	0	100	100
28	L	118/119~(99%)	115 (98%)	3 (2%)	42	69
29	М	46/47~(98%)	45 (98%)	1 (2%)	47	71
30	Ν	81/88~(92%)	80~(99%)	1 (1%)	67	83
31	О	92/97~(95%)	90~(98%)	2(2%)	47	71
32	Q	109/111 (98%)	103 (94%)	6 (6%)	18	47
33	R	90/91~(99%)	90 (100%)	0	100	100
34	Т	104/105~(99%)	103~(99%)	1 (1%)	73	86
35	U	81/82~(99%)	80~(99%)	1 (1%)	67	83
36	V	70/71~(99%)	66~(94%)	4 (6%)	17	46
37	W	68/69~(99%)	66~(97%)	2(3%)	37	65
38	Х	45/46~(98%)	44 (98%)	1 (2%)	47	71
39	Y	47/116 (40%)	47 (100%)	0	100	100
40	Z	90/91~(99%)	88~(98%)	2(2%)	47	71
41	0	71/72~(99%)	69~(97%)	2(3%)	38	66
42	3	285/289~(99%)	274 (96%)	11 (4%)	27	58
43	S	95/103~(92%)	93~(98%)	2(2%)	48	72
44	с	189/196~(96%)	181 (96%)	8 (4%)	25	56
All	All	6698/14613~(46%)	6554~(98%)	144 (2%)	47	72

All (144) residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	246	SER
1	А	444	THR
1	А	518	THR

Mol	Chain	Res	Type
1	Н	1572	MET
1	Н	1574	LEU
1	Н	1591	GLU
1	Н	1595	ILE
1	Ι	1538	ASN
1	Ι	1561	VAL
1	Ι	1564	ASP
1	Ι	1573	ILE
1	Ι	1577	LEU
1	Ι	1591	GLU
1	Ι	1593	LEU
1	Ι	1594	GLU
1	Ι	1652	SER
1	С	881	LEU
1	С	923	SER
1	D	1001	SER
1	D	1431	VAL
1	D	1449	ILE
1	D	1482	ASP
1	D	1491	GLU
1	Е	1001	SER
5	d	85	VAL
5	d	146	ARG
5	d	169	THR
5	d	205	VAL
5	d	238	LEU
5	d	264	VAL
5	d	276	THR
5	d	324	VAL
6	е	34	LYS
6	е	38	THR
6	е	110	LEU
6	е	152	ARG
6	е	155	THR
6	е	177	GLU
6	е	222	LEU
7	f	84	VAL
7	f	92	SER
7	f	171	PRO
8	g	100	ARG
8	g	168	ILE
8	g	173	LEU

Mol	Chain	Res	Type
8	g	184	LEU
9	h	36	ILE
9	h	164	VAL
9	h	175	VAL
10	i	12	VAL
10	i	16	VAL
10	i	19	SER
10	i	41	ILE
10	i	70	THR
10	i	82	VAL
10	i	92	TYR
10	i	93	VAL
11	j	27	PRO
11	j	91	VAL
11	j	140	THR
12	k	15	GLU
12	k	115	LYS
12	k	137	ARG
12	k	143	ARG
13	m	50	PRO
13	m	58	VAL
13	m	62	THR
13	m	85	LEU
15	0	117	ASN
16	р	121	PRO
16	р	124	LEU
17	q	20	SER
17	q	24	VAL
17	q	52	LEU
17	q	67	ILE
17	q	94	LEU
17	q	129	THR
17	q	169	THR
19	s	134	HIS
20	t	3	HIS
20	t	23	LYS
20	t	55	SER
20	t	160	THR
21	u	104	GLU
22	v	64	THR
22	V	91	ASP
23	W	54	LEU

Mol	Chain	Res	Type
23	W	67	PRO
23	W	81	GLN
23	W	135	VAL
24	у	46	PRO
25	Z	71	THR
25	Z	77	GLU
25	Z	87	SER
26	J	51	ARG
26	J	56	VAL
26	J	85	VAL
28	L	56	VAL
28	L	89	GLN
28	L	133	LEU
29	М	22	LYS
30	N	24	THR
31	0	16	LEU
31	0	64	VAL
32	Q	19	ARG
32	Q	36	LYS
32	Q	47	ARG
32	Q	68	PRO
32	Q	86	THR
32	Q	125	ARG
34	Т	90	ARG
35	U	36	ARG
36	V	5	THR
36	V	24	ARG
36	V	40	PRO
36	V	68	LYS
37	W	20	VAL
37	W	53	THR
38	Х	45	ARG
40	Ζ	21	THR
40	Ζ	97	LYS
41	0	60	CYS
41	0	88	GLU
42	3	60	THR
42	3	99	MET
42	3	138	ARG
42	3	143	GLU
42	3	156	LEU
42	3	177	ASP

Mol	Chain	Res	Type
42	3	200	THR
42	3	230	VAL
42	3	295	ILE
42	3	327	LEU
42	3	339	LEU
43	S	12	PRO
43	S	51	LEU
44	с	29	LEU
44	с	47	GLN
44	с	62	VAL
44	с	134	VAL
44	с	157	VAL
44	с	158	ILE
44	с	176	ASP
44	с	207	VAL

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (73) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	295	ASN
1	Н	1576	ASN
1	Н	1630	ASN
1	С	818	GLN
1	С	833	HIS
1	D	1007	GLN
1	D	1015	GLN
1	D	1091	GLN
1	Е	1007	GLN
1	Е	1015	GLN
1	Е	1227	ASN
1	Е	1439	GLN
1	Е	1474	ASN
5	d	293	ASN
8	g	93	ASN
8	g	194	HIS
9	h	59	GLN
9	h	95	ASN
9	h	243	GLN
10	i	50	ASN
10	i	51	GLN
10	i	96	HIS
10	i	125	ASN

Mol	Chain	Res	Type
11	j	163	GLN
12	k	20	ASN
12	k	90	GLN
13	m	120	GLN
15	0	95	GLN
15	0	194	GLN
16	р	26	GLN
16	р	50	ASN
16	р	55	HIS
16	р	193	GLN
17	q	45	GLN
17	q	133	HIS
17	q	137	ASN
18	r	58	ASN
18	r	73	GLN
18	r	136	ASN
19	s	144	GLN
19	s	156	ASN
20	t	46	GLN
21	u	16	GLN
21	u	134	GLN
23	W	98	ASN
25	Z	85	GLN
26	J	81	GLN
27	K	106	GLN
27	K	123	GLN
28	L	120	ASN
30	N	11	ASN
31	0	21	HIS
31	0	57	GLN
32	Q	26	HIS
32	Q	49	ASN
33	R	5	HIS
33	R	42	GLN
34	Т	59	ASN
36	V	30	GLN
36	V	79	GLN
38	X	19	GLN
38	Х	33	ASN
39	Y	109	ASN
40	Ζ	3	ASN
42	3	5	GLN

Continued from previous page...

Mol	Chain	Res	Type
42	3	48	GLN
42	3	196	ASN
42	3	304	GLN
42	3	361	HIS
43	S	3	GLN
44	с	38	HIS
44	с	144	ASN
44	с	216	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
3	4	157/158~(99%)	30 (19%)	4(2%)
4	b	120/121~(99%)	12 (10%)	0
45	a	3129/3396~(92%)	582~(18%)	0
All	All	3406/3675~(92%)	624~(18%)	4(0%)

All (624) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
3	4	21	С
3	4	23	U
3	4	34	U
3	4	35	С
3	4	50	С
3	4	53	А
3	4	59	А
3	4	62	С
3	4	63	G
3	4	80	А
3	4	81	U
3	4	82	U
3	4	84	С
3	4	85	G
3	4	86	U
3	4	87	G
3	4	90	U
3	4	95	G
3	4	104	А
3	4	105	А
3	4	106	С

Mol	Chain	Res	Type
3	4	111	А
3	4	113	U
3	4	125	U
3	4	126	А
3	4	138	А
3	4	144	G
3	4	151	С
3	4	152	G
3	4	158	U
4	b	11	А
4	b	13	А
4	b	22	А
4	b	51	A
4	b	54	U
4	b	60	G
4	b	65	G
4	b	74	С
4	b	91	G
4	b	102	А
4	b	112	G
4	b	121	U
45	a	16	А
45	a	26	А
45	a	40	А
45	a	43	А
45	a	44	U
45	a	49	А
45	a	59	G
45	a	60	А
45	a	65	А
45	a	66	A
45	a	74	G
45	a	76	G
45	a	83	U
45	a	92	G
45	a	95	A
45	a	99	A
45	a	105	С
45	a	109	A
45	a	110	G
45	a	116	А
45	a	121	А

Mol	Chain	Res	Type
45	a	122	А
45	a	133	U
45	a	135	С
45	a	136	G
45	a	142	С
45	a	156	G
45	a	157	А
45	a	161	G
45	a	166	С
45	a	170	G
45	a	172	G
45	a	182	U
45	a	187	А
45	a	190	U
45	a	191	U
45	a	213	A
45	a	218	G
45	a	219	А
45	a	240	U
45	a	241	G
45	a	243	G
45	a	252	U
45	a	269	G
45	a	271	С
45	a	283	G
45	a	284	A
45	a	286	U
45	a	295	А
45	a	305	U
45	a	307	А
45	a	315	C
45	a	316	U
45	a	323	A
45	a	329	U
45	a	339	С
45	a	350	С
45	a	370	U
45	a	376	G
45	a	392	G
45	a	398	A
45	a	399	A
45	a	401	U

Mol	Chain	Res	Type
45	a	402	А
45	a	403	С
45	a	421	G
45	a	422	А
45	a	439	С
45	a	440	А
45	a	495	G
45	a	507	U
45	a	521	А
45	a	525	С
45	a	531	G
45	a	532	А
45	a	535	G
45	a	536	U
45	a	546	С
45	a	547	G
45	a	548	G
45	a	552	G
45	a	555	U
45	a	556	U
45	a	557	А
45	a	558	U
45	a	559	A
45	a	569	А
45	a	579	G
45	a	592	A
45	a	594	U
45	a	595	G
45	a	609	G
45	a	611	А
45	a	619	A
45	a	620	U
45	a	621	A
45	a	636	С
45	a	649	A
45	a	660	A
45	a	675	С
45	a	677	A
45	a	681	U
45	a	691	A
45	a	705	A
45	a	710	А

Mol	Chain	Res	Type
45	a	712	G
45	a	715	А
45	a	716	А
45	a	765	С
45	a	767	U
45	a	774	G
45	a	776	U
45	a	777	U
45	a	780	А
45	a	781	G
45	a	785	G
45	a	786	А
45	a	805	G
45	a	806	А
45	a	816	A
45	a	817	А
45	a	830	A
45	a	833	G
45	a	849	С
45	a	861	С
45	a	874	U
45	a	879	U
45	a	890	С
45	a	896	А
45	a	897	U
45	a	906	А
45	a	907	G
45	a	908	G
45	a	909	G
45	a	914	А
45	a	916	G
45	a	917	A
45	a	923	С
45	a	937	G
45	a	944	С
45	a	959	С
45	a	960	U
45	a	961	С
45	a	962	А
45	a	978	G
45	a	979	U
45	a	980	А

Mol	Chain	Res	Type
45	a	981	U
45	a	993	G
45	a	994	G
45	a	995	U
45	a	1001	G
45	a	1002	А
45	a	1003	А
45	a	1010	G
45	a	1015	U
45	a	1017	С
45	a	1018	G
45	a	1019	G
45	a	1021	G
45	a	1022	U
45	a	1033	U
45	a	1036	А
45	a	1037	С
45	a	1041	U
45	a	1047	А
45	a	1049	С
45	a	1064	А
45	a	1065	А
45	a	1072	G
45	a	1081	U
45	a	1083	G
45	a	1087	G
45	a	1093	А
45	a	1094	U
45	a	1095	U
45	a	1096	U
45	a	1097	G
45	a	1098	A
45	a	1103	А
45	a	1104	G
45	a	1117	G
45	a	1126	G
45	a	1131	G
45	a	1153	A
45	a	1154	A
45	a	1155	С
45	a	1159	A
45	a	1163	А

Mol	Chain	Res	Type
45	a	1170	А
45	a	1180	А
45	a	1181	U
45	a	1182	А
45	a	1186	G
45	a	1190	А
45	a	1191	U
45	a	1192	С
45	a	1196	С
45	a	1197	А
45	a	1201	С
45	a	1208	U
45	a	1209	G
45	a	1212	A
45	a	1221	А
45	a	1222	G
45	a	1232	С
45	a	1235	U
45	a	1236	G
45	a	1237	G
45	a	1239	С
45	a	1242	G
45	a	1244	А
45	a	1245	А
45	a	1246	G
45	a	1258	U
45	a	1262	G
45	a	1263	А
45	a	1265	U
45	a	1270	А
45	a	1271	А
45	a	1272	С
45	a	1273	A
45	a	1285	G
45	a	1286	A
45	a	1287	A
45	a	1307	G
45	a	1309	U
45	a	1313	G
45	a	1330	А
45	a	1331	U
45	a	1332	А

Mol	Chain	Res	Type
45	a	1348	U
45	a	1349	G
45	a	1351	U
45	a	1352	А
45	a	1353	U
45	a	1355	А
45	a	1356	U
45	a	1357	G
45	a	1386	А
45	a	1399	А
45	a	1400	G
45	a	1418	А
45	a	1419	А
45	a	1434	G
45	a	1437	С
45	a	1450	G
45	a	1460	А
45	a	1481	А
45	a	1482	А
45	a	1483	G
45	a	1503	А
45	a	1508	С
45	a	1527	С
45	a	1533	U
45	a	1536	G
45	a	1555	U
45	a	1556	С
45	a	1557	А
45	a	1560	G
45	a	1562	С
45	a	1563	С
45	a	1564	U
45	a	1567	U
45	a	1568	U
45	a	1569	U
45	a	1575	A
45	a	1576	G
45	a	1578	C
45	a	1580	A
45	a	1581	C
45	a	1583	A
45	a	1587	А

Mol	Chain	Res	Type
45	a	1589	А
45	a	1590	G
45	a	1596	С
45	a	1618	G
45	a	1620	U
45	a	1629	U
45	a	1630	U
45	a	1639	С
45	a	1642	А
45	a	1643	А
45	a	1657	С
45	a	1675	G
45	a	1687	U
45	a	1718	G
45	a	1724	U
45	a	1725	С
45	a	1741	А
45	a	1742	U
45	a	1750	А
45	a	1751	G
45	a	1759	С
45	a	1760	А
45	a	1765	U
45	a	1766	G
45	a	1770	G
45	a	1775	G
45	a	1780	G
45	a	1794	G
45	a	1797	А
45	a	1814	А
45	a	1815	U
45	a	1816	A
45	a	1817	G
45	a	1819	U
45	a	1820	U
45	a	1821	U
45	a	1839	А
45	a	1841	А
45	a	1842	А
45	a	1846	С
45	a	1847	А
45	a	1849	С

Mol	Chain	Res	Type
45	a	1850	А
45	a	1878	G
45	a	1880	U
45	a	1884	А
45	a	1886	А
45	a	1893	А
45	a	1904	С
45	a	1906	G
45	a	1908	А
45	a	1920	U
45	a	1951	С
45	a	1952	G
45	a	2091	U
45	a	2094	С
45	a	2096	А
45	a	2097	U
45	a	2098	С
45	a	2101	С
45	a	2102	U
45	a	2112	U
45	a	2113	А
45	a	2121	G
45	a	2122	G
45	a	2131	А
45	a	2138	А
45	a	2140	U
45	a	2158	А
45	a	2159	U
45	a	2169	G
45	a	2171	G
45	a	2181	С
45	a	2192	С
45	a	2205	U
45	a	2206	G
45	a	2209	U
45	a	2210	G
45	a	2223	А
45	a	2225	U
45	a	2244	А
45	a	2246	G
45	a	2249	G
45	a	2251	G

Mol	Chain	Res	Type
45	a	2252	А
45	a	2255	A
45	a	2256	А
45	a	2257	С
45	a	2258	U
45	a	2261	G
45	a	2262	А
45	a	2270	A
45	a	2273	G
45	a	2279	A
45	a	2281	A
45	a	2282	U
45	a	2288	G
45	a	2307	G
45	a	2308	С
45	a	2310	U
45	a	2313	А
45	a	2314	U
45	a	2315	G
45	a	2319	U
45	a	2334	U
45	a	2335	G
45	a	2336	U
45	a	2337	С
45	a	2372	A
45	a	2373	A
45	a	2374	С
45	a	2375	G
45	a	2388	U
45	a	2393	G
45	a	2397	A
45	a	2402	A
45	a	2403	G
45	a	2404	A
45	a	2411	U
45	a	2418	G
45	a	2419	А
45	a	2435	G
45	a	2440	G
45	a	2442	G
45	a	2443	А
45	a	2506	U

Mol	Chain	Res	Type
45	a	2513	U
45	a	2514	U
45	a	2515	A
45	a	2522	G
45	a	2523	A
45	a	2531	С
45	a	2532	U
45	a	2533	G
45	a	2538	U
45	a	2539	С
45	a	2540	А
45	a	2541	U
45	a	2542	U
45	a	2549	G
45	a	2552	С
45	a	2554	А
45	a	2561	А
45	a	2569	А
45	a	2570	U
45	a	2571	U
45	a	2572	С
45	a	2573	G
45	a	2576	G
45	a	2585	G
45	a	2586	G
45	a	2589	G
45	a	2593	А
45	a	2594	С
45	a	2600	С
45	a	2606	G
45	a	2607	G
45	a	2614	G
45	a	2618	G
45	a	2619	G
45	a	2626	А
45	a	2629	U
45	a	2652	U
45	a	2656	А
45	a	2674	А
45	a	2677	G
45	a	2681	U
45	a	2689	А

Mol	Chain	Res	Type
45	a	2690	G
45	a	2691	А
45	a	2694	А
45	a	2695	А
45	a	2696	А
45	a	2704	А
45	a	2705	А
45	a	2712	U
45	a	2713	U
45	a	2726	С
45	a	2728	G
45	a	2729	U
45	a	2740	А
45	a	2752	U
45	a	2753	G
45	a	2762	А
45	a	2772	С
45	a	2777	G
45	a	2778	G
45	a	2796	G
45	a	2800	G
45	a	2801	А
45	a	2802	А
45	a	2803	А
45	a	2810	С
45	a	2816	G
45	a	2817	А
45	a	2821	С
45	a	2842	U
45	a	2843	U
45	a	2845	А
45	a	2847	А
45	a	2867	С
45	a	2871	G
45	a	2872	А
45	a	2875	U
45	a	2876	С
45	a	2887	А
45	a	2898	G
45	a	2899	С
45	a	2911	А
45	a	2923	U

Mol	Chain	Res	Type
45	a	2928	С
45	a	2935	U
45	a	2936	А
45	a	2941	А
45	a	2942	С
45	a	2947	G
45	a	2950	G
45	a	2951	G
45	a	2977	G
45	a	2983	С
45	a	2990	G
45	a	2996	U
45	a	2997	G
45	a	3012	A
45	a	3048	A
45	a	3049	A
45	a	3056	U
45	a	3057	U
45	a	3058	U
45	a	3059	G
45	a	3073	A
45	a	3074	G
45	a	3078	U
45	a	3079	U
45	a	3080	G
45	a	3092	С
45	a	3104	U
45	a	3122	А
45	a	3128	G
45	a	3129	A
45	a	3131	U
45	a	3142	А
45	a	3143	С
45	a	3154	С
45	a	3155	U
45	a	3156	U
45	a	3157	U
45	a	3164	C
45	a	3165	A
45	a	3173	G
45	a	3174	A
45	a	3176	G

Mol	Chain	Res	Type
45	a	3179	U
45	a	3181	С
45	a	3187	А
45	a	3196	U
45	a	3198	U
45	a	3207	U
45	a	3209	А
45	a	3213	А
45	a	3217	С
45	a	3218	А
45	a	3219	G
45	a	3227	А
45	a	3229	G
45	a	3235	С
45	a	3239	G
45	a	3243	А
45	a	3244	А
45	a	3245	А
45	a	3246	G
45	a	3259	U
45	a	3260	G
45	a	3263	G
45	a	3265	С
45	a	3268	А
45	a	3269	U
45	a	3272	С
45	a	3273	А
45	a	3275	U
45	a	3276	G
45	a	3277	U
45	a	3279	А
45	a	3281	U
45	a	3287	U
45	a	3289	G
45	a	3294	А
45	a	3304	U
45	a	3313	U
45	a	3316	А
45	a	3318	G
45	a	3319	U
45	a	3341	U
45	a	3342	А

<i>v</i> 1			10
\mathbf{Mol}	Chain	Res	Type
45	a	3345	G
45	a	3352	U
45	a	3353	G
45	a	3355	U
45	a	3356	G
45	a	3359	А
45	a	3360	С
45	a	3363	U
45	a	3369	G
45	a	3375	А
45	a	3376	А
45	a	3378	С
45	a	3386	G
45	a	3389	U
45	a	3396	U

All (4) RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
3	4	84	С
3	4	85	G
3	4	90	U
3	4	105	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 5 ligands modelled in this entry, 5 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-50188. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

Y Index: 192

6.2.2 Raw map

X Index: 192

Y Index: 192

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 179

Z Index: 191

6.3.2 Raw map

X Index: 179

Y Index: 183

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0279. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{50188}msk_{1.map}$ (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 536 $\rm nm^3;$ this corresponds to an approximate mass of 485 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.10	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	3.72	6.84	3.86

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.72 differs from the reported value 3.1 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-50188 and PDB model 9F58. Per-residue inclusion information can be found in section 3 on page 13.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0279 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0279).

9.4 Atom inclusion (i)

At the recommended contour level, 69% of all backbone atoms, 67% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0279) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.6740	0.5070
0	0.6580	0.5420
3	0.7200	0.5700
4	0.8140	0.5780
А	0.0210	0.0720
С	0.0100	0.0320
D	0.0420	0.1130
${ m E}$	0.0860	0.1820
Н	0.0160	0.0960
I	0.0150	0.0320
J	0.7000	0.5700
K	0.5930	0.5090
L	0.7560	0.5910
М	0.5890	0.5080
Ν	0.5750	0.5140
0	0.6630	0.5420
Р	0.0760	0.3490
Q	0.6870	0.5670
R	0.7600	0.5900
S	0.6800	0.5600
Т	0.6780	0.5430
U	0.6050	0.4980
V	0.7940	0.6040
W	0.5290	0.4750
Х	0.6990	0.5620
Y	0.7180	0.5500
Z	0.6140	0.5140
a	0.7820	0.5530
b	0.8280	0.5860
с	0.7750	0.6050
d	0.7790	0.5970
e	0.6210	0.5140
f	0.6190	0.5150
g	0.7630	0.5810
h	0.6080	0.5000

Chain	Atom inclusion	Q-score
i	0.6930	0.5470
j	0.6490	0.5330
k	0.4380	0.4170
m	0.6870	0.5470
n	0.7140	0.5710
0	0.7930	0.6070
р	0.7900	0.5970
q	0.6910	0.5490
r	0.7320	0.5760
s	0.6830	0.5430
t	0.7560	0.5830
u	0.6980	0.5530
V	0.5130	0.4450
W	0.7150	0.5730
У	0.7090	0.5660
Z	0.6660	0.5440

