

Apr 15, 2025 – 06:06 PM EDT

PDB ID	:	$9CQ6 / pdb_00009cq6$
EMDB ID	:	EMD-45809
Title	:	The ligation complex in the NHEJ pathway
Authors	:	Li, J.; Liu, L.; Gellert, M.; Yang, W.
Deposited on	:	2024-07-19
Resolution	:	3.10 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev117
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.42

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.10 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

207382

206894

The table below summarises the geometric issues observed across the polymeric chains and their fit
to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues
that contain outliers for $>=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey
segment represents the fraction of residues that are not modelled. The numeric value for each
fraction is indicated below the corresponding segment, with a dot representing fractions $<=5\%$
The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM
map (all-atom inclusion $< 40\%$). The numeric value is given above the bar.

16835

16415

Mol	Chain	Length	Quality of chain							
1	А	612	82%	• 16%						
1	a	612	82%	• 17%						
2	В	732	71%	28%						
2	b	732	71%	28%						
3	С	302	76%	• 24%						
3	С	302	75%	• 25%						
4	D	336	7% 59% •	40%						
4	Е	336	58% •	40%						
4	d	336	 59% •	40%						

Continued on next page...

			page				
Mol	Chain	Length		Qu	ality of chain		
4		าาต					
4	e	- 390		60%		40%	
5	F	914			91%		• 7%
5	f	914	28%		72%		
6	G	218	11%		89%		
6	Н	218	11%		89%		
7	Ι	68	•	59%		41%	
8	J	68		56%		44%	
9	К	51		71%		29%	
10	L	51	•	67%		33%	

Continued from previous page...

2 Entry composition (i)

There are 11 unique types of molecules in this entry. The entry contains 39180 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called X-ray repair cross-complementing protein 6.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	514	Total 4171	C 2668	N 706	O 779	S 18	1	0
1	a	507	Total 4094	C 2617	N 693	O 766	S 18	0	0

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual Comment		Reference	
А	-2	GLY	-	expression tag	UNP P12956	
А	-1	PRO	-	expression tag	UNP P12956	
А	0	VAL	-	expression tag	UNP P12956	
a	-2	GLY	-	expression tag	UNP P12956	
a	-1	PRO	-	expression tag	UNP P12956	
a	0	VAL	-	expression tag	UNP P12956	

• Molecule 2 is a protein called X-ray repair cross-complementing protein 5.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	В	526	Total 4211	C 2697	N 707	0 784	S 23	0	0
2	b	528	Total 4223	C 2703	N 709	0 788	S 23	0	0

• Molecule 3 is a protein called Non-homologous end-joining factor 1.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	C	021	Total	С	Ν	0	\mathbf{S}	0	0
		231	1831	1170	306	340	15	0	0
2		228	Total	С	Ν	0	\mathbf{S}	0	0
5 C	C	220	1813	1158	303	337	15	0	U

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	-2	GLY	-	expression tag	UNP Q9H9Q4
С	-1	PRO	-	expression tag	UNP Q9H9Q4
С	0	VAL	-	expression tag	UNP Q9H9Q4
с	-2	GLY	-	expression tag	UNP Q9H9Q4
с	-1	PRO	-	expression tag	UNP Q9H9Q4
с	0	VAL	-	expression tag	UNP Q9H9Q4

• Molecule 4 is a protein called DNA repair protein XRCC4.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	Л	201	Total	С	Ν	0	\mathbf{S}	0	0
	201	1628	1031	278	312	7	0	0	
4	F	201	Total	С	Ν	0	S	0	0
4	Ľ	201	1628	1031	278	312	7		0
4	d	201	Total	С	Ν	0	S	0	0
4 u	201	1628	1031	278	312	7	0	U	
4	4	201	Total	С	Ν	0	S	0	0
4	е	201	1628	1031	278	312	7	0	U

• Molecule 5 is a protein called DNA ligase 4.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	F	853	Total	С	Ν	0	S	1	0
0	ЭГ	000	6865	4370	1178	1272	45	L	0
5	f	955	Total	С	Ν	0	S	0	0
5		200	2069	1315	349	392	13	U	U

There are 6 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F	-2	GLY	-	expression tag	UNP P49917
F	-1	PRO	-	expression tag	UNP P49917
F	0	VAL	-	expression tag	UNP P49917
f	-2	GLY	-	expression tag	UNP P49917
f	-1	PRO	-	expression tag	UNP P49917
f	0	VAL	-	expression tag	UNP P49917

• Molecule 6 is a protein called Protein PAXX.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
6	G	24	Total 174	C 110	N 28	O 35	S 1	0	0

Continued on next page...

Continued from previous page...

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
6	Н	23	Total 165	C 105	N 27	O 32	S 1	0	0

There are 28 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	-13	MET	-	initiating methionine	UNP Q9BUH6
G	-12	GLY	-	expression tag	UNP Q9BUH6
G	-11	SER	-	expression tag	UNP Q9BUH6
G	-10	SER	-	expression tag	UNP Q9BUH6
G	-9	HIS	-	expression tag	UNP Q9BUH6
G	-8	HIS	-	expression tag	UNP Q9BUH6
G	-7	HIS	-	expression tag	UNP Q9BUH6
G	-6	HIS	-	expression tag	UNP Q9BUH6
G	-5	HIS	-	expression tag	UNP Q9BUH6
G	-4	HIS	-	expression tag	UNP Q9BUH6
G	-3	SER	-	expression tag	UNP Q9BUH6
G	-2	GLN	-	expression tag	UNP Q9BUH6
G	-1	ASP	_	expression tag	UNP Q9BUH6
G	0	PRO	-	expression tag	UNP Q9BUH6
Н	-13	MET	-	initiating methionine	UNP Q9BUH6
Н	-12	GLY	-	expression tag	UNP Q9BUH6
Н	-11	SER	-	expression tag	UNP Q9BUH6
Н	-10	SER	-	expression tag	UNP Q9BUH6
Н	-9	HIS	-	expression tag	UNP Q9BUH6
Н	-8	HIS	_	expression tag	UNP Q9BUH6
Н	-7	HIS	-	expression tag	UNP Q9BUH6
Н	-6	HIS	_	expression tag	UNP Q9BUH6
Н	-5	HIS	_	expression tag	UNP Q9BUH6
Н	-4	HIS	-	expression tag	UNP Q9BUH6
Н	-3	SER	-	expression tag	UNP Q9BUH6
Н	-2	GLN	-	expression tag	UNP Q9BUH6
Н	-1	ASP	-	expression tag	UNP Q9BUH6
Н	0	PRO	-	expression tag	UNP Q9BUH6

• Molecule 7 is a DNA chain called DNA (40-MER).

Mol	Chain	Residues		A	AltConf	Trace			
7	Ι	40	Total 811	C 389	N 142	0 240	Р 40	0	0

• Molecule 8 is a DNA chain called DNA (38-MER).

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
8	J	38	Total 776	С 371	N 139	O 228	Р 38	0	0

• Molecule 9 is a DNA chain called DNA (36-MER).

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
9	K	36	Total 742	$\begin{array}{c} \mathrm{C} \\ 355 \end{array}$	N 140	O 212	Р 35	0	0

• Molecule 10 is a DNA chain called DNA (34-MER).

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
10	L	34	Total 700	C 334	N 128	0 204	Р 34	0	0

• Molecule 11 is ADENOSINE MONOPHOSPHATE (CCD ID: AMP) (formula: $C_{10}H_{14}N_5O_7P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues		AltConf				
11	L	1	Total 23	C 10	N 5	0 7	P 1	0
			23	10	Э	1	T	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: X-ray repair cross-complementing protein 6

LUYS OLUYS OLUYS CLUBU C

VAL ASP ASP LEU LEU ASP MET MET

• Molecule 2: X-ray repair cross-complementing protein 5

Chain b:	71%	• 28%	
MET VAL ARG SER G5 M14 P25	d26 M115 M115 H130 H152 L169 L169 L175 G17 ASP G17 ASP ASP G181 G181 G181 G181 G181 G181 G181 G18	D222	K469 K532 K532 LYS LYS LYS LYS
ASP GLN VAL THR ALA GLU GLU TLE PHE	ALM ASN ASN ALM ALM ALM ALM ALM ALM ALA ALA ALA ALA	TAL TAL SER VAL GLY GLY ASN ALA ALA ALA ALA ALA ALA AVAL VAL VAL	LEU VAL LYS GLN LYS LYS
LYS ALA SER PHE GLU GLU ALA SER SER	LLU LLU LLU LLE ALSN ALSN ALSN GLU GLU GLU GLU ALSN ALSN ALSN ALSN ALSA ALSA ALSA ALSA	ALA ILE LYS PHE SER GLU GLU GLU GLU ASN PHE ASN PHE LEU LYS	ALA LEU GLN GLU LYS
VAL GLU LYS LYS GLN LYS GLN LEU ASN HIS PHE	LLF CLAU VAL VAL VAL VAL VAL CLN ASP GLN GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	ALA PALA LYS LYS RYS PRO SER ALA ALA ALA ALA ALA ALA CLU GLU	GLU GLY GLY ASP VAL
ASP ASP LEU LEU ASP MET ILE			
• Molecule 3	: Non-homologous end-joining factor 1		
Chain C:	76%	• 24%	
GLY P-1 R176 S188 C229 GLN	LLTS HLTS GLN GLN GLN GLN GLN ASP ASP PRO CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	SER SER ALA ALA ALA ALA SER ALA ALA CLU CLU CLU SER CLU SER CLV SER CLY	THR SER GLY PRO LEU LEU
GLN ARG PRO GLN LEU SER LYS VAL	LANS LIYS LIYS ARR ARR ARR ARR ARR ARR ARR ARR ARR AR		
• Molecule 3	: Non-homologous end-joining factor 1		
Chain c:	75%	• 25%	
GLY PRO D86 D98 C202	0227 VAL VAL CVAL CVAL CVAL CVAL CVA CLA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	PRU GLU GLN LEU VAL VAL SER SER PRO THR THR THR ALA ALA GLU GLU	LYS GLU SER THR GLY
THR SER GLY PRO LEU GLN ARG PRO GLN	SER LYS LYS LYS LYS LYS LYS RRG GLY CLEU SER SER		
• Molecule 4	: DNA repair protein XRCC4		
Chain D:	59% •	40%	
M1 W24 E49 D57 D58	M59 A60 A64 K72 K72 C77 C77 C77 C77 C77 C77 C77 C77 C77 C	A201 ALA GLU GLU GLU CYS CLY GLU GLU GLU	ALA TLE CYS SER SER GLU MET THR ALA ASP ASP ASP
PRO VAL TYR ASP GLU SER ASP GLU	SER GLU GLU GLU GLU GLU GLU ASP SER ALA ALA ALA ALA ASP ASP ASP ASP ASP ASP ASP ASP ASP AS	PALA PALA SER ARG ARG ARG GLN ARG ARG ARG ARG CLN ARG ARG CLN CLU	THR GLU PRO LYS MET

• Molecule 4: DNA repair protein XRCC4

Chain E:	58%	40%
M1 S12 S12 S12 C128 L176 L176 L176 C128 C178 C178 C178 C128 C178	ASP LYS GLV GLV GLV GLV GLV GLV GLV HR HR ALA ALA ALA ALA ARG ARG ARG ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC	GLU SER THR ASP ASP GLU GLU GLU CLU ASN GLU SER SER SER SER SER SER
ALA ALA VAL SER LYS SER ASP ASP ASP TLE TLE TLE VAL TSR ASP ASP ALA	SER ARG ARG ARG ARG ARG GLN ARC ARC GLN CTHR CGLN CTHR CGLU CTA ALA ALA ALA CGLU CGLU	ALSIN GLUN LEUU GLUN GLUN GLUU LYS ALSIN ARC ARC ARC ARC ARC ARC ARC ARC ARC ARC
SER LYS LYS LYS LYS ALY ALI ALI ALI ALI ASN ASN ASN ASN ASN ASN ASN ASN	PRO GEU ASP PHE ASP GLU GLU TLE	
• Molecule 4: DNA repair	protein XRCC4	
Chain d:	59% ·	40%
M1 D57 D57 A60 A60 A60 A77 A73 A73 A73 A73 A73 A73 A73 A81 A81 A81 A81	HIC CONTRACT CONTRAC	TLE CYS SER MET MET ALA ASP ASP ASP ASP PRO ASP PRO CLU SER ASP CLU SER SER SER SER SER SER
GLU ASN GLN THR THR THR GLY SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ILE SER SER SER SER SER ASP ILEU ASP ILE ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	LEU GLY THR FUR FUN PRO LYS MET PRO LYS GLU GLU GLU GLU GLU GLU
ASN ASR ARG PRO PRO PRO SER SER CLU CYS CLU CYS CLU HIS TLE SER ALA	ASN ASN SER SER CLUU CLEU CLEU CLEU ASN ASN ASN SER ASN GLU CLU TLE	
• Molecule 4: DNA repair	protein XRCC4	
Chain e:	60%	40%
M K188 A201 A201 A201 A14 A201 A201 A201 A201 A201 A201 A201 A201	TLE CYS CYS CYS CYS CYS GLU MET MET ALA ASP ASP ASP ASP ASP ASP ASP CLU CYA CLU SELU CLU SELU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	ASN THR ASP ASP ASP LEU CLY CLY SER ALA ALA ALA ALA ASP SER SER SER SER SER
11LE TLE SER SER SER SER SER ASP THR THR THR ASP TLE SER ARG ARG ARG ARG ARG ARG	dLN dLN ASN ASN ASN ASN LLY FLA PRO PLY ASN ASN GLU GLU GLU GLU GLU ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ARG PRO ASP PRO SER SER PRO CLU THR CLU SER LIYS CLU HIS TLL SER ALA
GLU MET SER SER SER CLU CLU CLU CLU CLU CLU ASP SER ASP SER ASP CLU GLU PHE CLU CLU		
• Molecule 5: DNA ligase	4	
Chain F:	91%	• 7%
GLY VRU VAL MET ALA ALA ALA CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	D300 F314 F314 H316 H316 H316 H316 H316 H316 H316 GLY C326 C C326 C C326 C C C C326 C C C C C C C C C C C C C C C C C C C	03550 0368 13366 1409 0441 0441 0441 057 1617 011 1617 057 011 1617
ASP ALV PRO GLU GLU GLU GLV GLV ALA ALA ALA ALA ALA ALA CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	TILE TILE GLU GLU LEU LEU LEU LEU LEU ASN VAL ASN VAL ASN VAL ASN FRG 659 F659 F659	F742 M746 C747 E790 B815 B815 B815

• Molecule 6: Protein PAXX

Chair	1 H:	11%								8	9%		-	-	-	-		-				
MET GLY SER SER	SIH SIH SIH SIH	HIS SER GLN	PRO MET	ASP PRO LEU	PRO PRO	LEU CYS THR	LEU PRO	PRO GLY	PRO GLU PRO	PRO ARG	VAL CYS	TYR CYS	GLU GLU	GLU SER	GLU GLU	GLY ASP	ARG GLY	PHE	LEU TYR	VAL THR	ASP ALA	ALA GLU
LEU TRP SER THR	CYS PHE PRO	SER SER LEU ALA	LEU LYS	ALA ARG PHE	GLY LEU SER	ALA ALA	ASP	THR PRO	ARG PHE ARG	ALA ALA	GLU	GLN	VAL ALA LEII	THR	GLU GLU	ASP ARG	ALA SER	THR	SER GLY	GLY PRO	SER ALA	LEU ALA
PHE ASP LEU SER	LYS VAL PRO GLY	PRU GLU ALA ALA	ARG	ARG ALA LEU	THR LEU GLY	LEU ALA 1 vs	ARG	TRP SER	GLU ARG	ARG LEU	ALA ALA ALA	GLU	THR ALA VAL	SER PRO	ARG LYS	SER PRO	ARG PRO	GLY	GLN	PHE	PRO ASP	PRO ASP
PRO GLN ARG GLY	GLY PRO GLY PRO	GLT VAL ARG ARG	C180	D202 GLU THR																		
• Mol	lecule	7: DN	JA	(40-1	MEI	R)																
Chair	ı I:				59	%						_	_	_	41	%	_	_	_			
2 2 2 2 2	DC DC DC	DC DT T	DC DC	DC DG	DT DA	DA DT AA	DA DA DA	DC DT	A29													
• Mol	lecule	8: DN	JA	(38-1	MEI	R)																
Chair	1 J:				56%	/ 0					-	-		-	44%	5	-		-	-		
DG DG DG	DC DC DA	DC DT T	DC DC	DC DG	DT DA	DA DT	DA DA	DC DT	DA DA A31	C68												
• Mol	lecule	9: DN	JA	(36-1	MEI	R)																
Chair	1 K: 🗖	-				-	71%										29%			-		
G1 T35	136 DA DG DT DT	DT DA DT DT	DG	DG DG DG	DG																	
• Mol	lecule	10: D	NA	(34-	-ME	ER)																
Chair	n L:					679	%							-	-	33	1%	-		-		
A1 T34 DT	DT DA DG DT	DT DT DA DT	DG DG	DG DC	DC DG																	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	500830	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	42.2	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	1500	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	73.849	Depositor
Minimum map value	-22.344	Depositor
Average map value	0.006	Depositor
Map value standard deviation	1.373	Depositor
Recommended contour level	8	Depositor
Map size (Å)	426.496, 426.496, 426.496	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.833, 0.833, 0.833	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: AMP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.24	0/4255	0.47	0/5733
1	a	0.24	0/4175	0.47	0/5626
2	В	0.24	0/4298	0.44	0/5800
2	b	0.24	0/4310	0.44	0/5816
3	С	0.24	0/1869	0.46	0/2536
3	с	0.24	0/1850	0.45	0/2510
4	D	0.25	0/1657	0.46	0/2228
4	Е	0.26	0/1657	0.48	0/2228
4	d	0.25	0/1657	0.46	0/2228
4	е	0.25	0/1657	0.49	0/2228
5	F	0.24	0/7015	0.45	0/9458
5	f	0.24	0/2118	0.45	0/2862
6	G	0.25	0/178	0.35	0/238
6	Н	0.25	0/169	0.36	0/226
7	Ι	0.49	0/907	0.92	0/1395
8	J	0.52	0/869	0.94	0/1338
9	Κ	0.50	0/834	0.92	0/1287
10	L	0.54	0/785	0.95	0/1210
All	All	0.28	0/40260	0.52	0/54947

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	511/612~(84%)	500 (98%)	11 (2%)	0	100 100
1	a	505/612~(82%)	496 (98%)	9(2%)	0	100 100
2	В	522/732~(71%)	518 (99%)	4 (1%)	0	100 100
2	b	524/732~(72%)	516 (98%)	8 (2%)	0	100 100
3	С	229/302~(76%)	221 (96%)	8 (4%)	0	100 100
3	с	226/302~(75%)	222 (98%)	4 (2%)	0	100 100
4	D	199/336~(59%)	194 (98%)	5 (2%)	0	100 100
4	Е	199/336~(59%)	196 (98%)	3 (2%)	0	100 100
4	d	199/336~(59%)	192 (96%)	7 (4%)	0	100 100
4	е	199/336~(59%)	193 (97%)	6 (3%)	0	100 100
5	F	848/914 (93%)	832 (98%)	16 (2%)	0	100 100
5	f	253/914~(28%)	249 (98%)	4 (2%)	0	100 100
6	G	22/218~(10%)	22 (100%)	0	0	100 100
6	Н	21/218 (10%)	20 (95%)	1 (5%)	0	100 100
All	All	4457/6900~(65%)	4371 (98%)	86 (2%)	0	100 100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	468/550~(85%)	455 (97%)	13 (3%)	38	66
1	a	460/550~(84%)	454 (99%)	6 (1%)	65	82
2	В	474/649~(73%)	465 (98%)	9 (2%)	52	75
2	b	475/649 (73%)	465 (98%)	10 (2%)	48	72
3	С	204/264~(77%)	202 (99%)	2 (1%)	73	86
3	с	202/264~(76%)	199 (98%)	3 (2%)	60	80
4	D	180/303~(59%)	178 (99%)	2 (1%)	70	84
4	Е	180/303~(59%)	175 (97%)	5 (3%)	38	66
4	d	180/303~(59%)	178 (99%)	2 (1%)	70	84
4	е	180/303~(59%)	179 (99%)	1 (1%)	84	91
5	F	760/810 (94%)	736 (97%)	24 (3%)	34	63
5	f	231/810 (28%)	228 (99%)	3 (1%)	65	82
6	G	19/173~(11%)	18 (95%)	1 (5%)	19	48
6	Н	18/173~(10%)	18 (100%)	0	100	100
All	All	4031/6104 (66%)	3950 (98%)	81 (2%)	50	74

All (81) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	32	TYR
1	А	80	ARG
1	А	92	LYS
1	А	95	ASN
1	А	98	ASN
1	А	162	SER
1	А	180	SER
1	А	228	ASP
1	А	237	SER
1	А	326	GLN
1	А	346	MET
1	А	409	TYR
1	А	471	PHE
2	В	163	PHE
2	В	237	PHE
2	В	273	LYS
2	В	288	ASP
2	В	306	LEU
2	В	323	PHE

Continued on next page...

Mol	Chain	Res	Type
2	В	428	GLU
2	В	530	LEU
2	В	531	SER
3	С	176	ARG
3	С	188	SER
4	D	24	TRP
4	D	179	ARG
4	Е	12	SER
4	Е	128	CYS
4	Е	143	HIS
4	Е	175	ASP
4	Е	177	TYR
5	F	19	LEU
5	F	105	ASP
5	F	153	ASP
5	F	154	SER
5	F	199	SER
5	F	300	ASP
5	F	314	PHE
5	F	316	HIS
5	F	326	CYS
5	F	368	ASP
5	F	386	TYR
5	F	409	HIS
5	F	438	TYR
5	F	441	ASP
5	F	537	SER
5	F	659	PHE
5	F	685	PHE
5	F	688	TYR
5	F	742	PHE
5	F	746	MET
5	F	747	CYS
5	F	759	ASP
5	F	847	PHE
5	F	891	GLU
6	G	193	LYS
1	a	137	HIS
1	a	192	ASP
1	a	297	LYS
1	a	324	SER
1	a	360	HIS

Continued from previous page...

Continued on next page...

Mol	Chain	Res	Type
1	a	409	TYR
2	b	14	MET
2	b	115	MET
2	b	130	ARG
2	b	152	HIS
2	b	242	ARG
2	b	265	LYS
2	b	323	PHE
2	b	357	MET
2	b	416	TYR
2	b	532	LYS
3	с	86	ASP
3	с	98	ASP
3	с	202	CYS
4	d	66	TYR
4	d	177	TYR
4	е	188	LYS
5	f	806	ASP
5	f	816	HIS
5	f	819	TYR

Continued from previous page...

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

Mol	Chain	Res	Type
3	С	21	ASN
5	F	183	GLN
2	b	330	GLN
5	f	718	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

1 ligand is modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	$_{\rm ths}$	В	ond ang	les
	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
11	AMP	L	1001	10	21,25,25	0.80	0	$23,\!38,\!38$	1.29	2 (8%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	AMP	L	1001	10	-	1/6/26/26	0/3/3/3

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	L	1001	AMP	N3-C2-N1	-4.15	123.04	128.67
11	L	1001	AMP	C4-C5-N7	-2.73	106.45	109.34

There are no chirality outliers.

All (1) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
11	L	1001	AMP	C4'-C5'-O5'-P

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is

within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-45809. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

Х

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Y Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

Z Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 271

Y Index: 262

Z Index: 248

6.3.2 Raw map

X Index: 249

Y Index: 172

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

Ζ

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 8.0. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_45809_msk_1.map (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 405 nm^3 ; this corresponds to an approximate mass of 366 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.323 \AA^{-1}

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.10	-	-
Author-provided FSC curve	3.13	3.53	3.16
Unmasked-calculated*	3.17	3.42	3.20

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-45809 and PDB model 9CQ6. Per-residue inclusion information can be found in section 3 on page 8.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 8.0 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (8).

9.4 Atom inclusion (i)

At the recommended contour level, 97% of all backbone atoms, 87% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (8) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8690	0.4270
А	0.9040	0.4830
В	0.8630	0.4530
С	0.9200	0.4860
D	0.7260	0.2730
E	0.8680	0.3560
F	0.8250	0.3970
G	0.8450	0.4890
Н	0.8910	0.5260
Ι	0.9170	0.3970
J	0.9780	0.3980
Κ	0.9190	0.4030
L	0.9460	0.4130
a	0.9100	0.5040
b	0.8670	0.4730
с	0.9280	0.4850
d	0.8120	0.3380
е	0.9070	0.4000
f	0.7990	0.2980

