

wwPDB X-ray Structure Validation Summary Report (i)

Jun 23, 2024 – 05:43 PM EDT

PDB ID	:	5C44
Title	:	Crystal structure of a transcribing RNA Polymerase II complex reveals a com-
		plete transcription bubble
Authors	:	Barnes, C.O.; Calero, M.; Malik, I.; Spahr, H.; Zhang, Q.; Pullara, F.; Kaplan,
		C.D.; Calero, G.
Deposited on	:	2015-06-17
Resolution	:	3.95 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.95 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1025 (4.22-3.70)
Clashscore	141614	1085 (4.22-3.70)
Ramachandran outliers	138981	1047 (4.22-3.70)
Sidechain outliers	138945	1039 (4.22-3.70)
RNA backbone	3102	1041 (4.84-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain			
1	А	1733	66%	15%	•	17%
2	В	1224	73%		20%	• 5%
3	С	318	66%	15%	•	17%
4	D	221	67%	13%	•	19%
5	Е	215	86%			13% •
6	F	155	43% 14%	4	4%	

Continued from previous page...

Mol	Chain	Length		Quality of a	chain	
7	G	179		79%		16% • •
8	Н	146		79%		14% 8%
9	Ι	120		86%		8% • 5%
10	J	70		71%		20% • 7%
11	К	120		78%		17% · ·
12	L	70	43%	19%	·	37%
13	R	9	56%		22%	22%
14	S	53	6% 17% ·		75%	
15	U	53	13% 19%	17% •	499	%

2 Entry composition (i)

There are 15 unique types of molecules in this entry. The entry contains 32540 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA-directed RNA polymerase II subunit RPB1.

Mol	Chain	Residues		Α	toms		ZeroOcc	AltConf	Trace	
1	А	1434	Total 11249	C 7083	N 1967	O 2137	S 62	0	0	0

• Molecule 2 is a protein called DNA-directed RNA polymerase II subunit RPB2.

Mol	Chain	Residues		A	toms		ZeroOcc	AltConf	Trace	
2	В	1158	Total 9175	C 5795	N 1603	0 1721	S 56	0	0	0

• Molecule 3 is a protein called DNA-directed RNA polymerase II subunit RPB3.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
3	С	265	Total 2086	C 1312	N 347	0 414	S 13	0	0	0

• Molecule 4 is a protein called DNA-directed RNA polymerase II subunit RPB4.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
4	D	178	Total 1417	C 875	N 254	O 286	${S \over 2}$	0	0	0

• Molecule 5 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC1.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
5	Е	214	Total 1752	C 1111	N 309	0 321	S 11	0	0	0

• Molecule 6 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC2.

Mol	Chain	Residues		At	\mathbf{oms}		ZeroOcc	AltConf	Trace	
6	F	87	Total 705	C 451	N 119	0 132	${ m S} { m 3}$	0	0	0

• Molecule 7 is a protein called DNA-directed RNA polymerase II subunit RPB7.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
7	G	171	Total 1339	C 861	N 222	0 248	S 8	0	0	0

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	172	LEU	-	expression tag	UNP P34087
G	173	GLU	-	expression tag	UNP P34087
G	174	HIS	-	expression tag	UNP P34087
G	175	HIS	-	expression tag	UNP P34087
G	176	HIS	-	expression tag	UNP P34087
G	177	HIS	-	expression tag	UNP P34087
G	178	HIS	-	expression tag	UNP P34087
G	179	HIS	-	expression tag	UNP P34087

• Molecule 8 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC3.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
8	Н	135	Total 1080	C 679	N 182	0 214	${ m S}{ m 5}$	0	0	0

• Molecule 9 is a protein called DNA-directed RNA polymerase II subunit RPB9.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
9	Ι	114	Total 921	$\begin{array}{c} \mathrm{C} \\ 568 \end{array}$	N 165	O 178	S 10	0	0	0

• Molecule 10 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC5.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
10	J	65	Total 532	C 339	N 93	0 94	S 6	0	0	0

• Molecule 11 is a protein called DNA-directed RNA polymerase II subunit RPB11.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
11	K	115	Total 924	C 593	N 157	0 172	${S \over 2}$	0	0	0

• Molecule 12 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC4.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
12	L	44	Total 346	C 214	N 67	O 61	$\frac{S}{4}$	0	0	0

• Molecule 13 is a RNA chain called Synthetic RNA.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
13	R	9	Total 197	C 88	N 40	O 60	P 9	0	0	0

• Molecule 14 is a DNA chain called Synthetic DNA.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
14	S	13	Total 268	C 128	N 46	0 81	Р 13	0	0	0

• Molecule 15 is a DNA chain called Synthetic DNA.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
15	U	27	Total 549	C 261	N 102	O 159	Р 27	0	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Chain A: 66% 17% 15% PUTUTES SERVICE SERVICES SERVI

• Molecule 1: DNA-directed RNA polymerase II subunit RPB1

SERIES SERVICES SERVI

• Molecule 2: DNA-directed RNA polymerase II subunit RPB2

• Molecule 3: DNA-directed RNA polymerase II subunit RPB3

T156 A159 K160 K160 A164 A174 A173 A174 A177 A177 A177 A177 A177 H176 H187 H187	T189 1190 7191 7203 6203 6203 6203 723 7235 7235 7235	D241 0243 V244 V244 V245 I248 I248 I248 I268 I258 I258 I258 I258 I258 I258 I258 I25	J268 LYS VAL ASN PHE ASN ALA ASN ASN ASN ASN ASN ASN ASN ASN ASN
MET LEU GLY SER ASP GLU MET MET MET MET MET GLV GLV GLV ALA ALA ASP PRO	TYR SER ASN ALA ALA SER GLN MET GLY ASN CLY GLY GLY	TYR ASP ASN ALA TRP	
• Molecule 4: DNA-dir	ected RNA polyme	erase II subunit RPH	34
Chain D:	67%	13%	• 19%
MET VAIN S4 S4 S5 S5 F5 F8 F7 F8 R11 R12 R12 R15 R15 R15 R15 R15 R15 R15 R15 R15 R15	E20 N33 L35 L36 L36 L57 L57 L57 L57 L57 K86 K86	K71 K71 K75 K75 K76 K76 K175 L78 L78 L78 L78 L78 L78 L78 L78 L78 L78	ALM ALA ALA ASN ASN ASN ASN TTRR TTRR TTRR ASP OLU ASP ASP
ASP LLEU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	E117 1149 8168 8168 8169 1177 1187 1187 1198 1198	1202 1207 1208 1211 1214 1214 1214 1214 1214 1214	
• Molecule 5: DNA-dir	ected RNA polyme	erases I, II, and III s	ubunit RPABC1
Chain E:	86%		13% •
D2 02 03 14 14 13 7 28 13 28 13 13 14 141 141	L78 689 192 1100 1105 1115 1115	1117 1117 1117 11132 11132 11132 11132 1144 1144 1144	L165 E172 L175 L190 L190 C214 M215
• Molecule 6: DNA-dir	ected RNA polyme	erases I, II, and III s	ubunit RPABC2
Chain F: 4	3% 1	4% 44'	%
Chain F: 4	3% 1 NA A BHR S A S A D D D D D D D D D D D D D D D D D D D	4% 44 4% 44 SX1 SX1 SX1 SX1 SX1 SX1 SX1 SX1	LLYS TLER VAL VAL TLE GLY GLY ASP CLY ASP CLU CLU CLU CLU CLU CLU CLU CLU
Chain F: 4	2000 100 100 100 100 100 100 100 100 100	1120 1120	LTR THR THR THR THR GLY GLY ASP CLU CLN GLN
Chain F: 4		4% 44 5 8 9 9 8 5 9 9 9 8 9 9 9 9 9 9 9 9 9 9	% 81 H H H H H H H H H H H H H H H H H H H
Chain F: 4	3% 1 ## \$ 7 1 5 11 # # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 1 # \$ \$ 0 1 # \$ \$ \$ 0 1 # \$ \$ \$ 0 1 # \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ \$ \$ \$ \$ 0 1 # \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4% 44	% S1 H H H X H X H X H X H X H X H X H X H
Chain F: 4 Image: Second state Image: Second state <	3% 1 H & Y N 0 H H K V 0 0 0 H K V 0 0 0 H K V 0 0 0 H K V 0 0 0 H K V 0 0 0 H K V 0 0 0 H V 0 0 H V 0 0 H V 0 0 H V 0 0 H V 0 0 H V 0 0 H V 0 0 H V 0 0 H V 0 0 H V 0 0 H V 0 0 H V 0 0 H V 0	4% 44 84 84 84 84 84 84 84 84 84	% SULT 10 10 10 10 10 10 10 10 10 10 10 10 10
Chain F: 4 S S S S S S S S S S S S S S S S S S S	3% 1 H & H & H & H & H & H & H & H & H & H &	4% 44 5. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% ST H H H H H H H H H H H H H H H H H H H
Chain F: 4 Image: Second state sta	3% 1 # \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4% 44 8<	% S1 H H W H 10 10 S 10 10 10 10 10 10 10 10 10 10 10 10 10
Chain F: 4	3% 1 H + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	4% 44 8<	% % <td< td=""></td<>

• Molecule 9: DNA-directed RNA polymerase II subunit RPB9

Chain I:		86%		8% • 5%
MET 12 N11 N12 N12 P16 L25 L25 L25 L25	E82 E82 C103 L104 S105 C106 X115 ASN LYS ARG	THR GLN		
• Molecule 10: D	NA-directed RNA	A polymerase	s I, II, and III s	subunit RPABC5
Chain J:	71%		20	% • 7%
M1 12 12 12 12 12 12 12 13 15 115 115	K17 R43 P44 045 045 046 046 M49 N64 N64 N64	GLU LYS ARG ASP		
• Molecule 11: D	NA-directed RNA	A polymerase	II subunit RPI	B11
Chain K:		78%		17% • •
M P4 F7 L11 L12 L12 L19 K20 K20	F35 T41 R47 R47 F48 F49 F58 F58 F58	R70 L73 L75 L87 L87 C91	194 W109 A115 AL1 ASP ALA ALA PHE	
• Molecule 12: D	NA-directed RNA	A polymerase	s I, II, and III s	subunit RPABC4
Chain L:	43%	19%	• 3	7%
MET SER SER GLU GLU GLV GLV CLU TLE TLE TLE ASN LEU ASN	ALA ALA ALA ALA ALA CLY CLY CLN ALA ALA ALA ALA	THR L27 130 E33 E33 K37 L38 S39	L40 T43 D44 A45 C48 C48 L55 L55	K58 A59 L64 R70
• Molecule 13: Sy	vnthetic RNA			
Chain R:	56%		22%	22%
0 70 70 70 70 70 70 70 70 70 70 70 70 70				
• Molecule 14: Sy	vnthetic DNA			
Chain S: 6%	17% •		75%	
DC DC D7 D7 D7 D7 D7 D7 D7 D7 D7 D7 D7 D7 D7	DA DG DG DG DG DG DG DG DG DG DA	DA DC DC DC DC DC DC DC DC DC	DG DA DA DA DG C29 C29 C29 C29 C29 C29 C29 C29 C29 C29	C34 G35 G36 G36 A38 A38 C39 DG
• Molecule 15: Sy	vnthetic DNA			
Chain U: 13%	19%	17% <mark>•</mark>	49%	
DC 22 23 44 44 48 65 65 67 61 10 411 11 612 613 613	A14 G15 G15 G16 G18 G18 C18 C21 C21 C21 C21 DA	DC DC DC DC DC DC DC DC DC DC DC DC DC D	DT DT DT DA DT DA DC DA	DG DG

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 2 2 21	Depositor
Cell constants	220.22Å 391.84Å 282.31Å	Demonitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{oscolution}}(\mathbf{\hat{A}})$	79.00 - 3.95	Depositor
Resolution (A)	90.88 - 3.95	EDS
% Data completeness	94.3 (79.00-3.95)	Depositor
(in resolution range)	$94.6\ (90.88-3.95)$	EDS
R_{merge}	0.23	Depositor
R_{sym}	0.23	Depositor
$< I/\sigma(I) > 1$	1.62 (at 4.01 Å)	Xtriage
Refinement program	BUSTER 2.10.2	Depositor
D D	0.215 , 0.236	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.271 , 0.292	DCC
R_{free} test set	3013 reflections $(2.99%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	114.2	Xtriage
Anisotropy	0.078	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.31, 214.9	EDS
L-test for twinning ²	$< L > = 0.32, < L^2 > = 0.15$	Xtriage
Estimated twinning fraction	0.178 for 1/2*h-1/2*k,-3/2*h-1/2*k,-l	Vtriago
Estimated twinning fraction	0.186 for 1/2 *h + 1/2 *k, 3/2 *h - 1/2 *k, -1	Athage
F_o, F_c correlation	0.86	EDS
Total number of atoms	32540	wwPDB-VP
Average B, all atoms $(Å^2)$	197.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.15% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bo	ond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.41	0/11452	0.64	0/15492
2	В	0.41	1/9347~(0.0%)	0.63	6/12601~(0.0%)
3	С	0.40	0/2124	0.60	0/2879
4	D	0.40	0/1427	0.59	0/1911
5	Е	0.38	0/1788	0.57	0/2406
6	F	0.40	0/717	0.63	0/967
7	G	0.39	0/1367	0.62	0/1844
8	Н	0.37	0/1097	0.57	0/1484
9	Ι	0.38	0/939	0.59	0/1266
10	J	0.38	0/541	0.58	0/727
11	Κ	0.37	0/942	0.56	0/1272
12	L	0.40	0/348	0.64	0/461
13	R	0.82	0/221	0.90	1/343~(0.3%)
14	S	3.47	54/299~(18.1%)	1.36	1/460~(0.2%)
15	U	2.78	61/615~(9.9%)	1.12	0/945
All	All	0.64	116/33224~(0.3%)	0.65	8/45058~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
14	S	0	1
15	U	0	1
All	All	0	2

The worst 5 of 116 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
15	U	4	DA	N3-C4	12.86	1.42	1.34
15	U	14	DA	N3-C4	12.21	1.42	1.34
15	U	11	DA	N3-C4	11.55	1.41	1.34

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
14	S	27	DT	P-O5'	11.27	1.71	1.59
15	U	11	DA	N9-C4	11.21	1.44	1.37

The worst 5 of 8 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	В	260	GLY	O-C-N	-8.44	109.19	122.70
2	В	260	GLY	CA-C-N	5.98	130.37	117.20
13	R	2	U	P-O3'-C3'	-5.93	112.58	119.70
2	В	79	THR	C-N-CA	5.90	136.46	121.70
14	S	27	DT	O4'-C1'-N1	5.64	111.95	108.00

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
14	S	32	DA	Sidechain
15	U	8	DA	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	11249	0	11277	114	0
2	В	9175	0	9138	123	0
3	С	2086	0	2049	25	0
4	D	1417	0	1428	9	0
5	Е	1752	0	1776	11	0
6	F	705	0	731	13	0
7	G	1339	0	1357	12	0
8	Н	1080	0	1049	9	0
9	Ι	921	0	877	9	0
10	J	532	0	546	5	0
11	Κ	924	0	934	11	0
12	L	346	0	367	3	0
13	R	197	0	97	4	0
14	S	268	0	149	25	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
15	U	549	0	303	33	0
All	All	32540	0	32078	342	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

The worst 5 of 342 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
14:S:38:DA:N6	15:U:2:DC:N4	2.15	0.93
14:S:38:DA:N6	15:U:2:DC:C4	2.43	0.86
1:A:567:LYS:HB3	1:A:568:PRO:CD	2.07	0.85
1:A:67:CYS:HG	1:A:77:CYS:HG	1.12	0.85
14:S:38:DA:H62	15:U:2:DC:N4	1.74	0.83

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Pe	erc	entiles
1	А	1426/1733~(82%)	1227~(86%)	135 (10%)	64 (4%)		2	24
2	В	1134/1224~(93%)	967~(85%)	121 (11%)	46 (4%)		3	25
3	С	263/318~(83%)	228 (87%)	26 (10%)	9~(3%)		3	30
4	D	174/221~(79%)	152 (87%)	12 (7%)	10 (6%)		1	19
5	Е	212/215~(99%)	198 (93%)	10 (5%)	4 (2%)		8	40
6	F	85/155~(55%)	79~(93%)	3 (4%)	3(4%)		3	29
7	G	169/179~(94%)	143 (85%)	21 (12%)	5 (3%)		4	32
8	Н	129/146~(88%)	111 (86%)	14 (11%)	4 (3%)		4	31

Mol	Chain	Analysed	Favoured	Allowed	Outliers	P	erce	entiles
9	Ι	112/120~(93%)	98 (88%)	13 (12%)	1 (1%)		17	54
10	J	63/70~(90%)	56 (89%)	3~(5%)	4 (6%)		1	18
11	Κ	113/120~(94%)	110 (97%)	3~(3%)	0]	100	100
12	L	42/70~(60%)	31 (74%)	8 (19%)	3~(7%)		1	16
All	All	3922/4571~(86%)	3400 (87%)	369~(9%)	153 (4%)		3	26

Continued from previous page...

5 of 153 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	49	LYS
1	А	66	LYS
1	А	319	GLY
1	А	385	ILE
1	А	567	LYS

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	1244/1520~(82%)	1156~(93%)	88 (7%)	14	42
2	В	996/1061~(94%)	938 (94%)	58~(6%)	20	48
3	С	233/274~(85%)	219 (94%)	14 (6%)	19	47
4	D	156/200~(78%)	147 (94%)	9~(6%)	20	48
5	Е	196/197~(100%)	186 (95%)	10 (5%)	24	51
6	F	77/137~(56%)	77~(100%)	0	100	100
7	G	152/160~(95%)	145~(95%)	7 (5%)	27	54
8	Н	118/128~(92%)	117 (99%)	1 (1%)	81	88
9	Ι	107/114 (94%)	105 (98%)	2(2%)	57	75
10	J	60/65~(92%)	57~(95%)	3(5%)	24	52
11	K	99/102~(97%)	93 (94%)	6 (6%)	18	47
12	L	$3\overline{8}/57~(67\%)$	32 (84%)	6 (16%)	2	16

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
All	All	3476/4015~(87%)	3272~(94%)	204 (6%)	19 47

5 of 204 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	В	624	LEU
2	В	1159	ARG
12	L	33	GLU
2	В	698	GLU
2	В	931	TYR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 20 such sidechains are listed below:

Mol	Chain	Res	Type
4	D	9	GLN
9	Ι	11	ASN
9	Ι	89	GLN
9	Ι	46	HIS
1	А	1171	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
13	R	7/9~(77%)	2(28%)	0

All (2) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
13	R	3	С
13	R	6	G

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

