

wwPDB EM Validation Summary Report (i)

Jan 1, 2025 – 10:45 PM EST

PDB ID	:	9C3H
EMDB ID	:	EMD-45170
Title	:	Structure of the CNOT3-bound human 80S ribosome with tRNA-ARG in the
		P-site.
Authors	:	Erzberger, J.P.; Cruz, V.E.
Deposited on	:	2024-06-01
Resolution	:	2.00 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	L1	157	85%	10% 6%
2	L5	5069	11% 57% 12%	30%
3	L8	297	9%	
4	L9	121	92%	7% •
5	LB	403	99%	
6	S4	76	61%	36% •
7	LC	427	85%	15%
8	LD	257	96%	•

Mol	Chain	Length	Quality of chain	
9	LE	145	91%	• 8%
10	m LF	248	91%	9%
11	LG	266	81%	19%
12	LH	192	99%	
13	LI	135	95%	5%
14	LJ	178	94%	6%
15	LK	288	77%	23%
16	LM	215	• 62% 3	7%
17	LN	204	100%	
18	LO	123	99%	
19	LP	97	89%	11%
20	LQ	211	9%	
21	LR	196	95%	5%
22	LS	176	• 100%	
23	LT	160	9%	
24	LU	51	98%	
25	LV	140	93%	7%
26	LW	157	31% 69% •	30%
27	LY	203	• 97%	
28	LZ	136	99%	
29	La	148	98%	
30	Lb	159	65%	35%
31	Lc	115	7%	12%
32	Ld	125	7%	17%
33	Le	106	99%	

Chain Length Quality of chain Mol Lf 3411099% 5% 35Lg 11794% • 5% • 36 Lh18486% 14% 8% Li 1053797% • i 38Lj 18899% • 27% 39Lk 7097% . Ll 40 13791% 9% 27% Lm 12841 22% 78% 42Ln 15626% 74% ÷ 99 43Lo 53% 47% Lp 4492 96% • ÷ 45Lz21499% 12% 46NC 25100% 8% S12644784% 16% 11% S2481869 71% 17% 11% 33% 49S59 89% 11% 7% 29550 \mathbf{SA} 75% 25% 32% SB609 5137% 62% • **.** SC293 5274% 25% 9% SD5320490% 10% 9% SE54263100% 50% SG5524992% 8% 42% 56 \mathbf{SH} 19496% • 19% SI 2085799% 13% 58SJ1948% 92% Continued on next page...

Mol	Chain	Length	Quality of chain	
59	SK	243	92% 8%	-
60	SL	158	91% 9%	-
61	SM	165	<u>32%</u> 59% 41%	-
62	SN	151	99%	
63	SO	151	83% 16%	-
64	SP	145	86% 14%	-
65	SQ	146	95% • 5%	%
66	SS	135	97%	
67	ST	152	96%	
68	SU	145	26%	_
69	SV	83	7%	-
70	SW	130	98%	
71	SX	143		
72	SV	132	17%	_
73	SZ	110	41%	_
74	Sa	115	64% 10%	_
75	Sa	24	23%	
76	50	195	99% 30%	• •
70		120	66% 34%	
70	Sa	122	90% 10%	
78	Se	133	41% 59%	
79	St	56	98%	·
80	Sg	317	95% ••	
81	So	25	100% 92%	-
82	Sy	132	92% 8% 47%	-
83	Sz	156	44% • 53%	-

2 Entry composition (i)

There are 88 unique types of molecules in this entry. The entry contains 222228 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues		Α	AltConf	Trace			
1	L1	148	Total 3153	C 1408	N 563	O 1035	Р 147	0	0

• Molecule 2 is a RNA chain called 28S rRNA.

Mol	Chain	Residues			AltConf	Trace			
2	L5	3531	Total 75768	C 33782	N 13851	O 24605	Р 3530	0	0

• Molecule 3 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues		At	AltConf	Trace			
3	L8	293	Total 2386	C 1510	N 435	0 427	S 14	0	0

• Molecule 4 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	L9	120	Total 2558	C 1141	N 456	0 842	Р 119	0	0

• Molecule 5 is a protein called Large ribosomal subunit protein uL3.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	LB	401	Total 3234	C 2058	N 607	O 555	S 14	0	0

• Molecule 6 is a RNA chain called tRNA-ARG,CCG-1.

Mol	Chain	Residues		A	toms	AltConf	Trace		
6	S4	76	Total 1634	C 732	N 290	O 536	Р 76	0	0

• Molecule 7 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues		At	AltConf	Trace			
7	LC	365	Total 2908	C 1829	N 580	0 486	S 13	0	0

• Molecule 8 is a protein called Large ribosomal subunit protein uL2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	LD	248	Total 1899	C 1189	N 389	0 315	S 6	0	0

• Molecule 9 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues		At	AltConf	Trace			
9	LE	134	Total 1115	C 700	N 226	0 186	${ m S} { m 3}$	0	0

• Molecule 10 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
10	m LF	225	Total 1870	C 1202	N 358	O 301	S 9	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
LF	173	SER	ALA	conflict	UNP P18124

• Molecule 11 is a protein called Large ribosomal subunit protein eL8.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
11	LG	216	Total 1752	C 1117	N 337	0 294	$\frac{S}{4}$	0	0

• Molecule 12 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	LH	190	Total 1518	C 956	N 284	0 272	${ m S}{ m 6}$	0	0

• Molecule 13 is a protein called Large ribosomal subunit protein eL32.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	LI	128	Total 1053	$\begin{array}{c} \mathrm{C} \\ 667 \end{array}$	N 216	O 165	${ m S}{ m 5}$	0	0

• Molecule 14 is a protein called Large ribosomal subunit protein uL5.

Mol	Chain	Residues		At	AltConf	Trace			
14	LJ	167	Total 1340	C 848	N 250	O 236	S 6	0	0

• Molecule 15 is a protein called Large ribosomal subunit protein eL6.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	LK	222	Total 1780	C 1147	N 337	O 292	$\frac{S}{4}$	0	0

• Molecule 16 is a protein called Large ribosomal subunit protein eL14.

Mol	Chain	Residues		At	AltConf	Trace			
16	LM	135	Total 1111	C 713	N 213	0 178	${f S}7$	0	0

• Molecule 17 is a protein called Large ribosomal subunit protein eL15.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
17	LN	203	Total 1700	C 1072	N 359	0 265	S 4	0	0

• Molecule 18 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	LO	122	Total 1014	C 641	N 205	0 167	S 1	0	0

• Molecule 19 is a protein called Large ribosomal subunit protein eL37.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	LP	86	Total 705	C 434	N 155	0 111	${f S}{5}$	0	0

• Molecule 20 is a protein called Large ribosomal subunit protein eL13.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	LQ	206	Total 1664	C 1041	N 345	0 274	$\frac{S}{4}$	0	0

• Molecule 21 is a protein called Large ribosomal subunit protein eL19.

Mol	Chain	Residues		Atoms					Trace
21	LR	186	Total 1558	C 965	N 335	0 249	${ m S} 9$	0	0

• Molecule 22 is a protein called Large ribosomal subunit protein eL20.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms		AltConf	Trace	
22	LS	176	Total 1460	C 930	N 284	0 235	S 11	0	0

• Molecule 23 is a protein called Large ribosomal subunit protein eL21.

Mol	Chain	Residues	Atoms					AltConf	Trace
23	LT	157	Total 1284	C 815	N 250	0 214	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called Large ribosomal subunit protein eL39.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
24	LU	50	Total 443	C 281	N 98	O 63	S 1	0	0

• Molecule 25 is a protein called Large ribosomal subunit protein uL14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	LV	130	Total 972	C 615	N 183	O 169	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called Large ribosomal subunit protein eL24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	LW	110	Total 893	C 560	N 180	0 150	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called Large ribosomal subunit protein uL13.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
27	LY	198	Total 1624	C 1048	N 317	O 254	${ m S}{ m 5}$	0	0

• Molecule 28 is a protein called Large ribosomal subunit protein eL27.

Mol	Chain	Residues	Atoms					AltConf	Trace
28	LZ	135	Total 1106	С 714	N 208	0 181	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein uL15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	La	147	Total 1162	C 736	N 237	0 186	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called Large ribosomal subunit protein eL29.

Mol	Chain	Residues		At	AltConf	Trace			
30	Lb	104	Total 848	C 526	N 186	0 132	${S \atop 4}$	0	0

• Molecule 31 is a protein called Large ribosomal subunit protein eL30.

Mol	Chain	Residues		At	AltConf	Trace			
31	Lc	101	Total 785	C 498	N 138	0 142	S 7	0	0

• Molecule 32 is a protein called Large ribosomal subunit protein eL31.

Mol	Chain	Residues		At	AltConf	Trace			
32	Ld	104	Total 862	C 546	N 167	0 147	${S \over 2}$	0	0

• Molecule 33 is a protein called Large ribosomal subunit protein eL42.

Mol	Chain	Residues		At	AltConf	Trace			
33	Le	105	Total 863	C 543	N 175	0 139	S 6	0	0

• Molecule 34 is a protein called Large ribosomal subunit protein eL33.

Mol	Chain	Residues		At	AltConf	Trace			
34	Lf	109	Total 875	C 555	N 174	0 143	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called Large ribosomal subunit protein eL34.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	Lg	111	Total 882	C 552	N 182	0 142	S 6	0	0

• Molecule 36 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues		At	AltConf	Trace			
36	Lh	159	Total 1289	C 808	N 249	0 223	S 9	0	0

• Molecule 37 is a protein called Large ribosomal subunit protein eL36.

Mol	Chain	Residues		At	AltConf	Trace			
37	Li	102	Total 832	C 521	N 177	0 129	${ m S}{ m 5}$	0	0

• Molecule 38 is a protein called Large ribosomal subunit protein eL18.

Mol	Chain	Residues		At	AltConf	Trace			
38	Lj	187	Total 1512	C 944	N 314	0 249	${ m S}{ m 5}$	0	0

• Molecule 39 is a protein called Large ribosomal subunit protein eL38.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
39	Lk	68	Total	С	N	0	S	0	0
			559	360	101	97	1		

• Molecule 40 is a protein called Large ribosomal subunit protein eL28.

Mol	Chain	Residues		At	AltConf	Trace			
40	Ll	124	Total 990	C 614	N 205	0 167	${S \atop 4}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ll	2	ACE	-	acetylation	UNP P46779

• Molecule 41 is a protein called Large ribosomal subunit protein eL22.

Mol	Chain	Residues		At	AltConf	Trace			
41	Lm	100	Total 816	C 524	N 142	0 148	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein uL23.

Mol	Chain	Residues		At	AltConf	Trace			
42	Ln	116	Total 949	C 606	N 178	0 164	S 1	0	0

• Molecule 43 is a protein called Large ribosomal subunit protein eL40.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
43	Lo	52	Total 436	C 272	N 91	O 67	S 6	1	0

There are 29 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Lo	?	-	GLY	deletion	UNP P62987
Lo	?	-	ILE	deletion	UNP P62987
Lo	?	-	PRO	deletion	UNP P62987
Lo	?	-	PRO	deletion	UNP P62987
Lo	?	-	ASP	deletion	UNP P62987
Lo	?	-	GLN	deletion	UNP P62987
Lo	?	-	GLN	deletion	UNP P62987
Lo	?	-	ARG	deletion	UNP P62987
Lo	?	-	LEU	deletion	UNP P62987
Lo	?	-	ILE	deletion	UNP P62987
Lo	?	-	PHE	deletion	UNP P62987
Lo	?	-	ALA	deletion	UNP P62987
Lo	?	-	GLY	deletion	UNP P62987
Lo	?	-	LYS	deletion	UNP P62987
Lo	?	-	GLN	deletion	UNP P62987
Lo	?	-	LEU	deletion	UNP P62987
Lo	?	-	GLU	deletion	UNP P62987
Lo	?	-	ASP	deletion	UNP P62987
Lo	?	- GLY		deletion	UNP P62987
Lo	?	-	ARG	deletion	UNP P62987

Chain	Residue	Modelled	Actual	Comment	Reference
Lo	?	-	THR	deletion	UNP P62987
Lo	?	-	LEU	deletion	UNP P62987
Lo	?	-	SER	deletion	UNP P62987
Lo	?	-	ASP	deletion	UNP P62987
Lo	?	-	TYR	deletion	UNP P62987
Lo	?	-	ASN	deletion	UNP P62987
Lo	?	-	ILE	deletion	UNP P62987
Lo	?	-	GLN	deletion	UNP P62987
Lo	?	-	LYS	deletion	UNP P62987

• Molecule 44 is a protein called Large ribosomal subunit protein eL43.

Mol	Chain	Residues		At	AltConf	Trace			
44	Lp	88	Total 681	C 430	N 131	0 113	S 7	0	0

• Molecule 45 is a protein called Large ribosomal subunit protein uL16.

Mol	Chain	Residues		At	AltConf	Trace			
45	Lz	211	Total 1705	C 1081	N 329	0 281	S 14	0	0

• Molecule 46 is a protein called Nascent chain.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
46	NC	25	Total 227	C 134	N 52	0 41	0	0

• Molecule 47 is a protein called Small ribosomal subunit protein eS1.

Mol	Chain	Residues		At	AltConf	Trace			
47	S1	221	Total 1790	C 1135	N 323	0 318	S 14	0	0

• Molecule 48 is a RNA chain called 18S rRNA.

Mol	Chain	Residues		1	AltConf	Trace			
48	S2	1660	Total 35485	C 15869	N 6358	O 11599	Р 1659	0	0

• Molecule 49 is a RNA chain called mRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	S5	9	Total 191	C 85	N 33	0 64	Р 9	0	0

• Molecule 50 is a protein called Small ribosomal subunit protein uS2.

Mol	Chain	Residues		Ate	AltConf	Trace			
50	SA	220	Total 1731	C 1099	N 303	0 321	S 8	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
SA	2	ACE	-	acetylation	UNP P08865

• Molecule 51 is a protein called CCR4-NOT transcription complex subunit 3.

Mol	Chain	Residues		Ate	AltConf	Trace			
51	SB	232	Total 1937	C 1204	N 344	O 383	S 6	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
SB	608	PRO	-	expression tag	UNP 075175
SB	609	ARG	-	expression tag	UNP 075175

• Molecule 52 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues	Atoms					AltConf	Trace
52	SC	219	Total 1700	C 1100	N 292	O 298	S 10	0	0

• Molecule 53 is a protein called Small ribosomal subunit protein uS7.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	SD	184	Total 1463	C 917	N 276	O 263	${f S}7$	0	0

• Molecule 54 is a protein called Small ribosomal subunit protein eS4, X isoform.

Mol	Chain	Residues		At	AltConf	Trace			
54	SE	262	Total 2075	C 1324	N 386	O 357	S 8	0	0

• Molecule 55 is a protein called Small ribosomal subunit protein eS6.

Mol	Chain	Residues		Ate	AltConf	Trace			
55	SG	229	Total 1853	C 1158	N 369	0 319	${f S}{7}$	0	0

• Molecule 56 is a protein called Small ribosomal subunit protein eS7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
56	SH	187	Total 1509	C 963	N 277	0 268	S 1	0	0

• Molecule 57 is a protein called Small ribosomal subunit protein eS8.

Mol	Chain	Residues	Atoms					AltConf	Trace
57	SI	207	Total 1695	C 1064	N 334	O 292	${ m S}{ m 5}$	0	0

• Molecule 58 is a protein called Small ribosomal subunit protein uS4.

Mol	Chain	Residues	Atoms					AltConf	Trace
58	SJ	179	Total 1495	C 953	N 299	0 241	S 2	0	0

• Molecule 59 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues	Atoms					AltConf	Trace
59	SK	224	Total 1745	C 1112	N 314	0 312	${f S}7$	0	0

• Molecule 60 is a protein called Small ribosomal subunit protein uS17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
60	SL	143	Total 1180	C 754	N 223	0 197	S 6	0	0

• Molecule 61 is a protein called Small ribosomal subunit protein eS10.

Mol	Chain	Residues		At	AltConf	Trace			
61	SM	97	Total 816	C 533	N 144	O 133	S 6	0	0

• Molecule 62 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues		At	AltConf	Trace			
62	SN	150	Total 1207	С 773	N 229	0 204	S 1	0	0

• Molecule 63 is a protein called Small ribosomal subunit protein uS11.

Mol	Chain	Residues		At	AltConf	Trace			
63	SO	127	Total 956	$\begin{array}{c} \mathrm{C} \\ 585 \end{array}$	N 189	0 176	S 6	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
SO	138	IAS	ASP	conflict	UNP P62263

• Molecule 64 is a protein called Small ribosomal subunit protein uS19.

Mol	Chain	Residues		At	AltConf	Trace			
64	SP	125	Total 1021	C 647	N 192	0 175	${f S}7$	0	0

• Molecule 65 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues		At	AltConf	Trace			
65	SQ	139	Total 1108	C 704	N 210	0 191	${ m S} { m 3}$	0	0

• Molecule 66 is a protein called Small ribosomal subunit protein eS17.

Mol	Chain	Residues		At	AltConf	Trace			
66	\mathbf{SS}	131	Total 1064	C 668	N 198	0 194	$\frac{S}{4}$	0	0

• Molecule 67 is a protein called Small ribosomal subunit protein uS13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	ST	147	Total 1208	C 758	N 244	O 205	S 1	0	0

• Molecule 68 is a protein called Small ribosomal subunit protein eS19.

Mol	Chain	Residues		At	AltConf	Trace			
68	SU	141	Total 1094	C 685	N 210	O 196	${ m S} { m 3}$	0	0

• Molecule 69 is a protein called Small ribosomal subunit protein eS21.

Mol	Chain	Residues		At	AltConf	Trace			
69	SV	83	Total 636	C 393	N 117	0 121	${ m S}{ m 5}$	0	0

• Molecule 70 is a protein called Small ribosomal subunit protein uS8.

Mol	Chain	Residues		At	AltConf	Trace			
70	SW	129	Total 1033	C 659	N 193	0 175	S 6	0	0

• Molecule 71 is a protein called Small ribosomal subunit protein uS12.

Mol	Chain	Residues		At	oms	Atoms						
71	SX	140	Total 1088	C 687	N 215	0 183	${ m S} { m 3}$	0	0			

• Molecule 72 is a protein called Isoform 3 of Small ribosomal subunit protein eS24.

Mol	Chain	Residues		At	oms			AltConf	Trace
72	SY	122	Total 1002	C 635	N 196	0 166	${f S}{5}$	0	0

• Molecule 73 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues		At	oms			AltConf	Trace
73	SZ	100	Total 795	C 498	N 152	0 141	$\frac{S}{4}$	0	0

• Molecule 74 is a protein called Small ribosomal subunit protein eS26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
74	Sa	99	Total 792	C 492	N 165	O 130	${ m S}{ m 5}$	0	0

• Molecule 75 is a protein called Small ribosomal subunit protein eS27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
75	Sb	83	Total 650	C 408	N 121	0 114	${f S}7$	0	0

• Molecule 76 is a protein called Small ribosomal subunit protein eS25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
76	Sc	83	Total 670	C 431	N 125	0 113	S 1	0	0

• Molecule 77 is a protein called Small ribosomal subunit protein eS28.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
77	54	62	Total	С	Ν	Ο	\mathbf{S}	0	0
	bu	02	488	297	97	92	2	0	0

• Molecule 78 is a protein called FAU ubiquitin-like and ribosomal protein S30.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
78	Se	55	Total 437	С 271	N 95	O 70	S 1	0	0

• Molecule 79 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
70	Ct	55	Total	С	Ν	Ο	S	0	0
19	51	- 55	458	286	94	73	5	0	0

• Molecule 80 is a protein called Receptor of activated protein C kinase 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
80	Sg	303	Total 2364	C 1492	N 412	0 448	S 12	0	0

• Molecule 81 is a protein called Small ribosomal subunit protein eS32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
81	So	25	Total 239	C 145	N 64	O 27	${ m S} { m 3}$	0	0

• Molecule 82 is a protein called Small ribosomal subunit protein eS12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
82	Sy	121	Total 939	C 590	N 166	0 174	${f S}$ 9	0	0

• Molecule 83 is a protein called Ubiquitin-40S ribosomal protein S27a.

Mol	Chain	Residues		At	oms			AltConf	Trace
83	Sz	74	Total 607	C 384	N 116	O 100	S 7	0	0

• Molecule 84 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
84	L1	4	Total Mg 4 4	0
84	L5	204	Total Mg 204 204	0
84	L9	3	Total Mg 3 3	0
84	S4	6	Total Mg 6 6	0
84	LD	1	Total Mg 1 1	0
84	LI	2	Total Mg 2 2	0
84	LN	1	Total Mg 1 1	0
84	LR	2	Total Mg 2 2	0
84	LV	1	Total Mg 1 1	0
84	La	1	Total Mg 1 1	0
84	Lh	1	Total Mg 1 1	0
84	S2	97	Total Mg 97 97	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
84	SG	1	Total Mg 1 1	0
84	ST	1	Total Mg 1 1	0
84	SX	1	Total Mg 1 1	0

• Molecule 85 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
85	L1	3	Total K 3 3	0
85	L5	42	Total K 42 42	0
85	L9	1	Total K 1 1	0
85	LC	1	Total K 1 1	0
85	LD	2	Total K 2 2	0
85	LV	1	Total K 1 1	0
85	Lz	1	Total K 1 1	0
85	S2	39	Total K 39 39	0
85	SE	1	Total K 1 1	0
85	SO	1	Total K 1 1	0
85	ST	1	Total K 1 1	0
85	Sf	1	Total K 1 1	0

• Molecule 86 is 2-[3-(2-HYDROXY-1,1-DIHYDROXYMETHYL-ETHYLAMINO)-PROPYL AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL (three-letter code: B3P) (formula: $C_{11}H_{26}N_2O_6$).

Mol	Chain	Residues	A	Aton	ns		AltConf
86	L5	1	Total 19	C 11	N 2	O 6	0

• Molecule 87 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
87	LP	1	Total Zn 1 1	0
87	Le	1	Total Zn 1 1	0
87	Lg	1	Total Zn 1 1	0
87	Lo	1	Total Zn 1 1	0
87	Lp	1	Total Zn 1 1	0
87	Sa	1	Total Zn 1 1	0
87	Sf	1	Total Zn 1 1	0
87	Sz	1	Total Zn 1 1	0

• Molecule 88 is water.

Mol	Chain	Residues	Atoms	AltConf
88	L1	153	Total O 153 153	0
88	L5	4961	Total O 4961 4961	0
88	L8	25	TotalO2525	0
88	L9	93	Total O 93 93	0
88	LB	85	Total O 85 85	0
88	S4	52	$\begin{array}{cc} \text{Total} & \text{O} \\ 52 & 52 \end{array}$	0
88	LC	104	Total O 104 104	0
88	LD	91	Total O 91 91	0
88	LE	10	Total O 10 10	0
88	LF	52	$\begin{array}{cc} \text{Total} & \text{O} \\ 52 & 52 \end{array}$	0
88	LG	16	Total O 16 16	0
88	LH	18	Total O 18 18	0
88	LI	64	Total O 64 64	0
88	LJ	3	Total O 3 3	0
88	LK	12	Total O 12 12	0
88	LM	7	Total O 7 7	0
88	LN	89	Total O 89 89	0
88	LO	13	TotalO1313	0
88	LP	33	Total O 33 33	0
88	LQ	45	$\begin{array}{cc} \text{Total} & \text{O} \\ 45 & 45 \end{array}$	0
88	LR	23	Total O 23 23	0
88	LS	39	Total O 39 39	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
88	LT	41	Total O 41 41	0
88	LU	10	Total O 10 10	0
88	LV	27	Total O 27 27	0
88	LW	7	Total O 7 7	0
88	LY	42	$\begin{array}{cc} \text{Total} & \text{O} \\ 42 & 42 \end{array}$	0
88	LZ	10	Total O 10 10	0
88	La	46	Total O 46 46	0
88	Lb	15	Total O 15 15	0
88	Lc	8	Total O 8 8	0
88	Ld	15	Total O 15 15	0
88	Le	19	Total O 19 19	0
88	Lf	33	Total O 33 33	0
88	Lg	30	Total O 30 30	0
88	Lh	42	$\begin{array}{cc} \text{Total} & \text{O} \\ 42 & 42 \end{array}$	0
88	Li	4	Total O 4 4	0
88	Lj	69	Total O 69 69	0
88	Lk	4	Total O 4 4	0
88	Ll	27	$\begin{array}{cc} \text{Total} & \text{O} \\ 27 & 27 \end{array}$	0
88	Lm	1	Total O 1 1	0
88	Ln	18	Total O 18 18	0
88	Lo	3	Total O 3 3	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
88	Lp	25	Total O 25 25	0
88	Lz	16	Total O 16 16	0
88	S1	25	Total O 25 25	0
88	S2	2334	Total O 2334 2334	0
88	S5	11	Total O 11 11	0
88	SA	9	Total O 9 9	0
88	SB	9	Total O 9 9	0
88	SC	36	Total O 36 36	0
88	SD	25	TotalO2525	0
88	SE	45	$\begin{array}{cc} \text{Total} & \text{O} \\ 45 & 45 \end{array}$	0
88	SG	16	Total O 16 16	0
88	SH	6	Total O 6 6	0
88	SI	31	Total O 31 31	0
88	SJ	34	Total O 34 34	0
88	SK	6	Total O 6 6	0
88	SL	43	Total O 43 43	0
88	SM	4	Total O 4 4	0
88	SN	32	TotalO3232	0
88	SO	33	Total O 33 33	0
88	SP	14	Total O 14 14	0
88	SQ	32	Total O 32 32	0

Mol	Chain	Residues	Atoms	AltConf
88	SS	5	Total O 5 5	0
88	ST	23	TotalO2323	0
88	SU	20	TotalO2020	0
88	SV	8	Total O 8 8	0
88	SW	39	Total O 39 39	0
88	SX	47	$\begin{array}{cc} \text{Total} & \text{O} \\ 47 & 47 \end{array}$	0
88	SY	10	Total O 10 10	0
88	SZ	12	Total O 12 12	0
88	Sa	38	Total O 38 38	0
88	Sb	11	Total O 11 11	0
88	Sc	3	Total O 3 3	0
88	Sd	2	Total O 2 2	0
88	Se	10	Total O 10 10	0
88	Sf	8	Total O 8 8	0
88	Sg	1	Total O 1 1	0
88	So	3	Total O 3 3	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 5.8S rRNA

• Molecule 5: Large ribosomal subunit protein uL3

• Molecule 11: Large ribosomal subunit protein eL8

Chain LG:	81%	2	19%	
MET PRO CLYS CLYS CLYS LYS ALA ALA ALA ALA CLYS CLYS	VAL ALA PRO PRO ALA ALA ALA VAL VAL LYS GLN GLN ALA ALA VAL VAL VAL	R89 q108 K110 C113 q112 q112 A116 A116 A117	A118 E119 K120 K120 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARG PRO PRO V135
S209 E254 A256 A256 A1A LVS A1A LVS LUS	ALA TTRR LVS GLV GLY			
• Molecule 12:	Large ribosomal subuni	t protein uL6		
Chain LH:		99%		
M1 K50 K51 K52 K52 K52 C130 C130 C130 C130 C130 C130 C130 C130	q189 A190 GLU GLU			
• Molecule 13:	Large ribosomal subuni	t protein eL32		
Chain LI:		95%	5%	
MET A2 A3 A3 A3 A3 CLU CLU CLU CLU ASN	GLU			
• Molecule 14:	Large ribosomal subuni	t protein uL5		
Chain LJ:	% 	94%	6%	
MET ALA ALA GLM ASP GLU GLU CVS GLU NIO	E28 4 329 5 630 630 641 4 641 4 642 4 859 4 859 4 859 4 859 4 859 4 851 4	R95 4 E111 4 E111 4 Y119 4 P120 4 P121 4 S122 4	q168 D171 D176 CLYS LYS	
• Molecule 15:	Large ribosomal subuni	t protein eL6		
Chain LK:	%77%		23%	
MET ALA GLY GLU GLU CLY GLU CLYS PRO ASP ASP	LYS GLU LYS LYS LYS PRO GLU GLU ALA ALA ALA ALA ALA ALA ALA ALA CLYS GLY CLYS CLY	GLY GLY ASN LEU LYS LYS PRO C40 K41 K41 K41	374 475 475 41.4 ALA ALA 128 SER 128 GLU 128 CLU CLV CLU CLV	voo L289 A90
191 193 193 195 195 195 199 199	K100 N101 G102 G102 R104 R106 R1109 K109 V206 V206	K210 K220 K221 K221 ARG ARG PRO ARG ARG ARG ARG ARG ALU GLV GLV GLV	PHE ASP THR GLU CIYS E238 K239 K239 F288	
• Molecule 16:	Large ribosomal subuni	t protein eL14		
Chain LM:	62%		37%	
MET V2 K35 A133 A133 A133 L135 L135 L136	ALA SER PRO LYS LYS LYS CLY THR THR THR ALA ALA ALA ALA ALA	ALA ALA ALA ALA ALA ALA ALA PRO PRO PRO LYS LLYS THR THR ALA SER SER	LYS LYS ALA PRO PRO GLN CYS CVAL CYS GLN CIN CIN CIN CIN CIN CIN CIN CIN CIN CI	GLN
		PDB PROTEIN DATA BANK		

100%

11%

• Molecule 17: Large ribosomal subunit protein eL15

Chain LN:

MET G2

- Molecule 18: Large ribosomal subunit protein uL29
- Chain LO: 99% .
- Molecule 19: Large ribosomal subunit protein eL37

Chain LP:	89%
MET T2 K87 ARG ALA ALA ALA ALA ALA ALA	S S S S S S S S S S S S S S S S S S S
• Molecule 20): Large ribosomal subunit protein eL13
Chain LQ:	9%97%
++ +	• • • • • • • • • • • • • • • • • • • •

• Molecule 21: Large ribosomal subunit protein eL19

A133 P134 K135 K136

K200 E201 A202 A203 E204 Q205 Q206 Q206 V207 GLU LYS LYS

• Molecule 22: Large ribosomal subunit protein eL20

Chain LS:

• Molecule 23: Large ribosomal subunit protein eL21

9%			
Chain LT:	98%		
MET 12 K107 Q114 K115 K115 K117	E121 K122 C123 U126 Q127 Q127 C145 F158 ALA		
• Molecule 24: L	arge ribosomal subunit protein eL39		
Chain LU:	98%		
MET S2 L51			
• Molecule 25: L	arge ribosomal subunit protein uL14		
Chain LV:	93%	7%	
MET SER LYS ARG ARG GLY GLY SER SER SER SER SER	A140		
• Molecule 26: L	arge ribosomal subunit protein eL24		
Chain LW:	31%	• 30%	
MET K2 R2 R5 GLU GLU GLU CLU CLU CLU CLN CLN ARC	THR ARG ARG VAL VAL VAL F78 Q79 Q79 A81 C84 A81 C84 A81 C84 A85 C84 A85 C84 A85 C84 A85 C84 A85 C84 A85 C84 A85 C84 A85 C84 A85 C84 A85 C84 A85 C84 A85 C84 A85 C84 A85 C84 C84 C84 C84 C84 C84 C84 C84 C84 C84	N95 996 798 998 899 8101 8101 8102 8103 8103 8103 8103 8105 8105	Q107 A108 1109 A111 A111 A1112 A112 A112 A115 A115 A11
q120 4121 \$122 \$122 \$123 \$124 \$124 \$124 \$124 \$124 \$124 \$124 \$124	LYS LYS PRO LYS LYS LYS ALA ALA LYS LYS LYS LYS VAL LYS ALA ARG PRO CLY SER LYS ALA ARG CLY ARG ALA ARG ARG ARG ARG ARG ARA ARA ARA ARA AR		
• Molecule 27: L	arge ribosomal subunit protein uL13		
Chain LY:	97%		
MET ALA GLU CLU VAL GLN VG R117 B12 B136	K187 V2 03		
• Molecule 28: L	arge ribosomal subunit protein eL27		
Chain LZ:	99%		
MET G2 C2 B35 B88 189 P90			
• Molecule 29: L	arge ribosomal subunit protein uL15		
Chain La:	98%		
	WORLDWIDE PROTEIN DATA BANK		

MET V15 N93 K94 A148		
\bullet Molecule 30: Large ribosomal subunit protein eL29		
Chain Lb: 65%	35%	
MET A2 A2 B54 C54 C54 C54 A59 A59 A62 A62 A62 A62 A62 A62 A62 A62 A62 A62	K114 G115 L116 R117 L118 C119 R120 R120	K122 ALA ALA LYS ALA LYS ALA LYS ASP CLN GLN
LTHR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL		
• Molecule 31: Large ribosomal subunit protein eL30		
Chain Lc: 88%	12%	
MET ALA ALA LYS LYS LYS S10 B100 GLU GLU GLU GLU CLYS		
\bullet Molecule 32: Large ribosomal subunit protein eL31		
Chain Ld: 83%	17%	
MIET ALA ALA LIYS LIYS LIYS LIYS GLY GLY GLY GLY GLY GLY GLU D95 B95 B95 B95 B95 B95 B95 B95 B95 B95 B		
\bullet Molecule 33: Large ribosomal subunit protein eL42		
Chain Le: 99%		
V2 I104 F105 F106		
\bullet Molecule 34: Large ribosomal subunit protein eL33		
Chain Lf: 99%		
MET 22 1110		
\bullet Molecule 35: Large ribosomal subunit protein eL34		
Chain Lg: 94%	• 5%	

 \bullet Molecule 42: Large ribosomal subunit protein uL23

Chain Ln:	74%	26%	
MET ALA PRO LYS ALA LYS LYS ALU ALU	PR0 PR0 PR0 PR0 PR0 CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS		
• Molecule	43: Large ribosomal subunit protein eL40		
Chain Lo:	53% 47°	%	
MET GLN TILE PHE VAL LYS THR LEU	dLY THR THR THR THR THR THR THR VAL CLU VAL CLU VAL THR THR THR THR THR THR THR THR THR THR	GLY GLY K128	
• Molecule	44: Large ribosomal subunit protein eL43	_	
Chain Lp:	96%	· ·	
MET A2 L89 LYS ASP GLN			
• Molecule	45: Large ribosomal subunit protein uL16		
Chain Lz:	99%		
MET GLY R3 A106 T113	D183 1212 H213 SBR		
• Molecule	46: Nascent chain		
Chain NC:	12%		
R187			
• Molecule	47: Small ribosomal subunit protein eS1		
Chain S1:	8%	16%	
MET A2 V3 G4 K5 K7 K7	 19 110 1110 1175 1175 1175 1175 1175 117 1141 1157 115	=230 =231 H232 C233 C233 GLU GLU GLU SER SER SER	LYS ALA THR
LYS VAL GLU GLU ARG ALA ASP GLY TYR	PRO VAL GUN SER VAL VAL		

DB ATA BANK

• Molecule 72:	Isoform 3 of Small	ribosomal subunit	protein eS24	
Chain SY:	17%	92%	8	%
MET ASN ASP T4 R8 K32 K32	K43 L44 A45 K46 K49 D53 D53 S78 S78 S78 S78	D80 4 K84 4 K100 4 K101 7 T1102 4 T1120 4	A121 K122 M123 M124 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	
• Molecule 73:	Small ribosomal su	ubunit protein uS10)	
Chain SZ:	41%	84%	16%	_
MET ALA ALA PHE LYS LYS GLY CYAT PRO VAN	CUU PRD GUU PRD GUU VAL ALA H18 H21 R21 R21 122	K30 K34 V35 C36 A37 A37 C36 A37 L39 I40 F41 G42 G42	445 E45 E45 K46 N47 L48 K51 K51 C52 C52 C52 C52	H12 593 594 595 595 595 197 197 798 798 798 7100
S105 1106 E107 P108 0109 C110 V112 V112	V114 T115 T115 A117 ASP ALA			
• Molecule 74:	Small ribosomal su	ubunit protein eS26	i	
Chain Sa:		86%	14%	_
MET 12 246 60 60 461	R100 PHE ARG ALA ALA ALA ALA PRO PRO PRO PRO PRO PRO PRO	PRO MET		
• Molecule 75:	Small ribosomal su	ubunit protein eS27		
Chain Sb:	23%	99%		-
MET P2 E13 E13 C37 P38 C37 C40	Y41 + Y41 + Y42 +	S78 F79 R80 Q83 H84		
• Molecule 76:	Small ribosomal su	ubunit protein eS25		
Chain Sc:	30%		34%	-
MET PRO PRO LYS ASP ASP LYS LYS LYS LYS	A.D. A.D. GLY LYS SER SER AIA LYS LYS LYS ASP PRO ASP ASP PRO ASN ASN	SER CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	V40 R41 D42 K43 K43 F50 F51 A53 A53 A53 Y55 Y55	D56 K57 L58 C59 K60 E61 V62 E15 E75 R76
A86 E90 E92 S33 K94 G95	197 K102 K104 R104 R111 R111 R111 T113 L1713 C175 G17	GLY ALSP ALA PRO ALA ALA ALA GLY GLV ALA ALA		
• Molecule 77:	Small ribosomal su	ubunit protein eS28		
Chain Sd:	19%	90%	10°	%
			B	

MET ASP THR SER SER ARG Q7 P8 Q7 P8 C2 S23	M35 D36 D37 T38 S39 R63 R65	R67 L68 ARG			
• Molecule 78: FA	U ubiquitin-like	and ribosomal pr	otein S30		
Chain Se:	41%		59%		
MET GLN CLEU CLEU PHE VAL ARG GLN CLN CLN CLN CLU CLU CLU CLU CLU	VAL THR GLY GLN GLN GLN GLU VAL ALA CLN ILE ILE LYS	ALA HIS VAL ALA SER CLU GLU GLU ALA ALA ALA ALA ASP	GLN VAL VAL LEU LEU ALA ALA ALA PRO GLU SPRO GLU	GLU ALA ALA LEU GLY GLY VAL GLU GLU	
ALA LEU THR THR LEU LEU VAL ALA ALA ALA ALA ALA ALA ALA ALA CLY CLY	LYS: VAL HIS GLY GLY K92 K95 K95 K96	E97 K98 N118 V119 V120 V120 F122 F123 F123 G124	K122 K127 S133		
• Molecule 79: Sm	all ribosomal su	bunit protein uS1	4		
Chain Sf:		98%		·	
MET G2 H3 Q4 Q5 D56					
• Molecule 80: Red	ceptor of activat	ed protein C kina	se 1		
Chain Sg:	70%	% 95%	_		
MET 12 63 44 63 63 63 63 64 110 110	K12 N15 Q20 121 123 123 123 124	q26 F27 F27 P28 M30 M30 L31 L31 L32 L32 D37	140 141 142 143 143 145 145 145 145	1649 1150 1151 1154 1154 1154 1154 1155 1154 1155 1154	L59 V66 V70 171 572 573 D74 G75
q776 F77 A78 A78 L79 W90 W90 D91 L92 D91 C92 T93	G99 T198 R100 F101 V102 G103 G103 F103 T105	L109 A112 F113 S114 S115 S115 N117 R118 R118	1120 1121 1122 1123 1129 1131 1131 1131	1133 1134 1135 1135 1135 1135 1135 1138 1139 1141 1141	0143 0144 E145 E146 E146 E148 E148
R155 F156 S157 P158 N159 S161 S161 N162 F164 F164	V1166 G169 W170 D171 K172 L173	N1// N178 A180 A180 C182 C182 K183 L184 K185 K185 T186	N12/ H188 G190 H191 T192 G193 Y194 L193 N196	T197 V198 T199 V200 S201 P202 C204 S205 S205	C207 A206 S209 D213 C214 A216 M217 L218
4219 D220 ↔ L221 ↔ E223 ↔ E223 ↔ C224 ↔ K225 ↔ Y228 ↔	L230 D231 C232 C233 C233 D234 D234 T235 T235 N337 A238	L239 C240 F241 F241 P243 P243 P243 P245 Y245 W247 W247 U245	C249 A250 A251 7252 S255 K257 K257 K257	W259 W250 D260 L261 E261 C263 K264 L265 L265 V267 V267	E269 E269 L270 CLA71 CLA71 CLA7 CLA7 CLA7 CLA7 CLA7 CLA7 CLA7 CLA7
LYS ALA E2282 P284 P284 P284 2288 2288 2288 2288	5292 A293 C296 C296 C296 T297 T297 T297 T299 F2299 A300	4301 1302 1302 1306 1306 1308 1308 1309 1310 1310 1310	T313		
• Molecule 81: Sm	all ribosomal su	bunit protein eS3	2		

Chain So:

100%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	276000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	17	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	1900	Depositor
Magnification	Not provided	
Image detector	FEI FALCON IV (4k x 4k)	Depositor
Maximum map value	0.242	Depositor
Minimum map value	-0.107	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.007	Depositor
Recommended contour level	0.0175	Depositor
Map size (Å)	419.328, 419.328, 419.328	wwPDB
Map dimensions	448, 448, 448	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.936, 0.936, 0.936	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 1MA, ZN, B8N, 2MG, JMH, OMC, UR3, MLZ, OMG, IAS, 5MC, UY1, H2U, HIC, HY3, A2M, B3P, M3L, OMU, 7MG, ACE, MG, K, V5N, M2G, MA6, 1MG, PSU, 5MU, 6MZ, 4AC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	L1	0.38	0/3450	0.77	0/5372	
2	L5	0.38	0/81683	0.82	11/127409~(0.0%)	
3	L8	0.27	0/2432	0.51	0/3256	
4	L9	0.37	0/2858	0.80	0/4455	
5	LB	0.26	0/3289	0.53	0/4399	
6	S4	0.73	0/1530	1.07	0/2384	
7	LC	0.26	0/2962	0.55	0/3977	
8	LD	0.27	0/1924	0.60	0/2578	
9	LE	0.25	0/1132	0.55	0/1504	
10	m LF	0.28	0/1905	0.55	0/2540	
11	LG	0.26	0/1781	0.54	0/2397	
12	LH	0.26	0/1537	0.53	0/2066	
13	LI	0.27	0/1071	0.57	0/1429	
14	LJ	0.26	0/1363	0.56	0/1824	
15	LK	0.26	0/1814	0.54	0/2435	
16	LM	0.26	0/1133	0.52	0/1516	
17	LN	0.26	0/1745	0.59	0/2338	
18	LO	0.26	0/1022	0.54	0/1351	
19	LP	0.27	0/720	0.61	0/952	
20	LQ	0.26	0/1695	0.57	0/2270	
21	LR	0.25	0/1574	0.57	0/2080	
22	LS	0.27	0/1500	0.56	0/2013	
23	LT	0.26	0/1312	0.52	0/1753	
24	LU	0.25	0/453	0.55	0/599	
25	LV	0.27	0/986	0.54	0/1324	
26	LW	0.26	0/907	0.51	0/1202	
27	LY	0.27	0/1656	0.54	0/2216	
28	LZ	0.27	0/1129	0.51	0/1507	
29	La	0.26	0/1178	0.54	0/1573	
30	Lb	0.25	0/850	0.54	0/1121	
31	Lc	0.30	0/796	0.50	0/1068	

Mal	Chain	Bond	lengths	B	ond angles
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
32	Ld	0.26	0/877	0.57	0/1181
33	Le	0.27	0/866	0.55	0/1141
34	Lf	0.27	0/894	0.59	0/1198
35	Lg	0.26	0/892	0.58	0/1189
36	Lh	0.26	0/1317	0.54	0/1769
37	Li	0.25	0/843	0.55	0/1115
38	Lj	0.27	0/1536	0.61	0/2052
39	Lk	0.27	0/565	0.49	0/750
40	Ll	0.28	0/1003	0.59	0/1346
41	Lm	0.27	0/830	0.51	0/1114
42	Ln	0.26	0/966	0.53	0/1301
43	Lo	0.25	0/433	0.55	0/575
44	Lp	0.25	0/691	0.57	0/919
45	Lz	0.27	0/1744	0.54	0/2331
46	NC	0.21	0/226	0.70	0/299
47	S1	0.25	0/1816	0.49	0/2427
48	S2	0.37	0/37683	0.79	5/58736~(0.0%)
49	S5	0.32	0/212	0.78	0/328
50	SA	0.26	0/1766	0.48	0/2399
51	SB	0.39	0/1959	0.69	2/2618~(0.1%)
52	SC	0.26	0/1737	0.48	0/2347
53	SD	0.25	0/1483	0.50	0/1993
54	SE	0.26	0/2117	0.53	0/2849
55	SG	0.26	0/1876	0.55	0/2499
56	SH	0.26	0/1532	0.49	0/2053
57	SI	0.25	0/1724	0.54	0/2298
58	SJ	0.25	0/1520	0.55	0/2030
59	SK	0.25	0/1773	0.53	0/2387
60	SL	0.26	0/1201	0.55	0/1604
61	SM	0.25	0/840	0.45	0/1133
62	SN	0.26	0/1231	0.54	0/1656
63	SO	0.26	0/959	0.57	0/1284
64	SP	0.26	0/1041	0.51	0/1392
65	SQ	0.26	0/1125	0.53	0/1506
66	SS	0.25	0/1078	0.51	0/1447
67	ST	0.24	0/1226	0.56	0/1643
68	SU	0.25	0/1113	0.50	0/1493
69	SV	0.26	0/643	0.51	0/860
70	SW	0.26	$0/10\overline{50}$	0.53	$0/140\overline{6}$
71	SX	0.25	0/1096	0.51	$0/146\overline{1}$
72	SY	0.25	0/1019	0.54	$0/1\overline{354}$
73	SZ	0.26	0/805	0.56	0/1081
74	Sa	0.26	0/805	0.57	0/1079

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
75	Sb	0.25	0/664	0.49	0/891	
76	Sc	0.25	0/678	0.51	0/906	
77	Sd	0.25	0/490	0.59	0/656	
78	Se	0.26	0/442	0.55	0/582	
79	Sf	0.25	0/469	0.54	0/623	
80	Sg	0.24	0/2420	0.51	0/3294	
81	So	0.27	0/240	0.72	0/305	
82	Sy	0.25	0/949	0.46	0/1273	
83	Sz	0.26	0/619	0.53	0/818	
All	All	0.34	0/222471	0.72	18/325899~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
16	LM	0	1
51	SB	0	4
57	SI	0	1
All	All	0	6

There are no bond length outliers.

The worst 5 of 18 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	L5	417	G	O4'-C1'-N9	7.74	114.39	108.20
2	L5	4404	U	O4'-C1'-N1	6.88	113.70	108.20
2	L5	1639	U	C2-N1-C1'	6.34	125.30	117.70
48	S2	1520	G	C4-N9-C1'	6.33	134.74	126.50
2	L5	1639	U	C6-N1-C1'	-6.14	112.60	121.20

There are no chirality outliers.

5 of 6 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
16	LM	35	ARG	Sidechain
51	SB	13	ARG	Sidechain
51	SB	177	ARG	Sidechain
51	SB	57	ARG	Sidechain
51	SB	90	ARG	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	L8	291/297~(98%)	282 (97%)	9 (3%)	0	100	100
5	LB	398/403~(99%)	394 (99%)	4 (1%)	0	100	100
7	LC	363/427~(85%)	352 (97%)	11 (3%)	0	100	100
8	LD	245/257~(95%)	237 (97%)	8 (3%)	0	100	100
9	LE	132/145~(91%)	129 (98%)	3 (2%)	0	100	100
10	LF	223/248~(90%)	218 (98%)	5 (2%)	0	100	100
11	LG	212/266~(80%)	209 (99%)	3 (1%)	0	100	100
12	LH	188/192~(98%)	185 (98%)	3 (2%)	0	100	100
13	LI	126/135~(93%)	124 (98%)	2 (2%)	0	100	100
14	LJ	165/178~(93%)	163 (99%)	2 (1%)	0	100	100
15	LK	216/288~(75%)	210 (97%)	6 (3%)	0	100	100
16	LM	133/215~(62%)	130 (98%)	3 (2%)	0	100	100
17	LN	201/204~(98%)	195 (97%)	6 (3%)	0	100	100
18	LO	120/123~(98%)	118 (98%)	2 (2%)	0	100	100
19	LP	84/97~(87%)	83 (99%)	1 (1%)	0	100	100
20	LQ	204/211~(97%)	202 (99%)	2 (1%)	0	100	100
21	LR	184/196~(94%)	183 (100%)	1 (0%)	0	100	100
22	LS	174/176~(99%)	170 (98%)	4 (2%)	0	100	100
23	LT	155/160~(97%)	153 (99%)	2 (1%)	0	100	100
24	LU	48/51 (94%)	48 (100%)	0	0	100	100
25	LV	128/140 (91%)	127 (99%)	1 (1%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
26	LW	106/157~(68%)	103 (97%)	3 (3%)	0	100	100
27	LY	196/203~(97%)	193 (98%)	3 (2%)	0	100	100
28	LZ	133/136~(98%)	131 (98%)	2 (2%)	0	100	100
29	La	144/148~(97%)	140 (97%)	3 (2%)	1 (1%)	19	14
30	Lb	99/159~(62%)	97~(98%)	2 (2%)	0	100	100
31	Lc	99/115~(86%)	99 (100%)	0	0	100	100
32	Ld	102/125~(82%)	102 (100%)	0	0	100	100
33	Le	102/106~(96%)	102 (100%)	0	0	100	100
34	Lf	107/110~(97%)	104 (97%)	3 (3%)	0	100	100
35	Lg	109/117~(93%)	107 (98%)	2 (2%)	0	100	100
36	Lh	157/184~(85%)	153 (98%)	4 (2%)	0	100	100
37	Li	100/105~(95%)	99 (99%)	1 (1%)	0	100	100
38	Lj	185/188~(98%)	181 (98%)	4 (2%)	0	100	100
39	Lk	66/70~(94%)	64 (97%)	2 (3%)	0	100	100
40	Ll	122/137~(89%)	120 (98%)	2 (2%)	0	100	100
41	Lm	98/128~(77%)	91 (93%)	7 (7%)	0	100	100
42	Ln	114/156~(73%)	113 (99%)	1 (1%)	0	100	100
43	Lo	50/99~(50%)	50 (100%)	0	0	100	100
44	Lp	86/92~(94%)	82 (95%)	4 (5%)	0	100	100
45	Lz	209/214~(98%)	209 (100%)	0	0	100	100
46	NC	23/25~(92%)	23 (100%)	0	0	100	100
47	S1	217/264~(82%)	214 (99%)	3 (1%)	0	100	100
50	SA	218/295~(74%)	217 (100%)	1 (0%)	0	100	100
51	SB	230/609~(38%)	219 (95%)	10 (4%)	1 (0%)	30	27
52	SC	$\overline{217/293}~(74\%)$	211 (97%)	6 (3%)	0	100	100
53	SD	180/204 (88%)	172 (96%)	8 (4%)	0	100	100
54	SE	260/263~(99%)	256 (98%)	4 (2%)	0	100	100
55	SG	$\overline{227/249} \ (91\%)$	222 (98%)	5 (2%)	0	100	100
56	SH	185/194 (95%)	177 (96%)	8 (4%)	0	100	100
57	SI	205/208~(99%)	203 (99%)	2 (1%)	0	100	100
58	SJ	177/194~(91%)	173 (98%)	4 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
59	SK	222/243~(91%)	217~(98%)	5 (2%)	0	100	100
60	SL	139/158~(88%)	137~(99%)	2 (1%)	0	100	100
61	SM	95/165~(58%)	91~(96%)	4 (4%)	0	100	100
62	SN	148/151~(98%)	147 (99%)	1 (1%)	0	100	100
63	SO	123/151~(82%)	120 (98%)	3 (2%)	0	100	100
64	SP	123/145~(85%)	121 (98%)	2 (2%)	0	100	100
65	SQ	137/146~(94%)	135~(98%)	2 (2%)	0	100	100
66	SS	129/135~(96%)	127~(98%)	2 (2%)	0	100	100
67	ST	145/152~(95%)	142 (98%)	3 (2%)	0	100	100
68	SU	139/145~(96%)	135 (97%)	4 (3%)	0	100	100
69	SV	81/83~(98%)	81 (100%)	0	0	100	100
70	SW	127/130~(98%)	125 (98%)	2 (2%)	0	100	100
71	SX	137/143~(96%)	136 (99%)	1 (1%)	0	100	100
72	SY	120/132~(91%)	116 (97%)	4 (3%)	0	100	100
73	SZ	98/119 (82%)	96~(98%)	2 (2%)	0	100	100
74	Sa	97/115~(84%)	96~(99%)	1 (1%)	0	100	100
75	Sb	81/84~(96%)	79~(98%)	2 (2%)	0	100	100
76	Sc	81/125~(65%)	78~(96%)	3 (4%)	0	100	100
77	Sd	60/69~(87%)	60 (100%)	0	0	100	100
78	Se	53/133 (40%)	53 (100%)	0	0	100	100
79	Sf	53/56~(95%)	52 (98%)	1 (2%)	0	100	100
80	Sg	299/317~(94%)	284 (95%)	15 (5%)	0	100	100
81	So	23/25~(92%)	23 (100%)	0	0	100	100
82	Sy	119/132~(90%)	113 (95%)	6 (5%)	0	100	100
83	Sz	72/156~(46%)	63 (88%)	8 (11%)	1 (1%)	9	4
All	All	11414/13366~(85%)	11166 (98%)	245 (2%)	3~(0%)	100	100

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
51	SB	97	GLU
83	Sz	91	ASN
29	La	15	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
3	L8	247/250~(99%)	247~(100%)	0	100	100
5	LB	347/348~(100%)	346 (100%)	1 (0%)	91	94
7	LC	304/348~(87%)	303 (100%)	1 (0%)	91	94
8	LD	189/198~(96%)	189 (100%)	0	100	100
9	LE	124/135~(92%)	122 (98%)	2 (2%)	58	64
10	LF	195/216~(90%)	195 (100%)	0	100	100
11	LG	187/223~(84%)	187 (100%)	0	100	100
12	LH	169/171~(99%)	169 (100%)	0	100	100
13	LI	114/121~(94%)	114 (100%)	0	100	100
14	LJ	141/149~(95%)	141 (100%)	0	100	100
15	LK	196/252~(78%)	196 (100%)	0	100	100
16	LM	115/161~(71%)	115 (100%)	0	100	100
17	LN	171/172~(99%)	171 (100%)	0	100	100
18	LO	109/110~(99%)	109 (100%)	0	100	100
19	LP	73/80~(91%)	73~(100%)	0	100	100
20	LQ	172/177~(97%)	171~(99%)	1 (1%)	84	88
21	LR	165/175~(94%)	165~(100%)	0	100	100
22	LS	157/157~(100%)	157 (100%)	0	100	100
23	LT	138/140~(99%)	138 (100%)	0	100	100
24	LU	47/48~(98%)	47 (100%)	0	100	100
25	LV	100/107~(94%)	100 (100%)	0	100	100
26	LW	90/126~(71%)	89~(99%)	1 (1%)	70	76
27	LY	170/174~(98%)	169 (99%)	1 (1%)	84	88
28	LZ	117/118 (99%)	117 (100%)	0	100	100
29	La	$\overline{119/120} \ (99\%)$	119 (100%)	0	100	100
30	Lb	85/125~(68%)	85 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
31	Lc	86/97~(89%)	86 (100%)	0	100	100
32	Ld	95/110~(86%)	95~(100%)	0	100	100
33	Le	92/93~(99%)	92 (100%)	0	100	100
34	Lf	88/89~(99%)	88 (100%)	0	100	100
35	Lg	95/100~(95%)	94 (99%)	1 (1%)	70	76
36	Lh	140/163~(86%)	139 (99%)	1 (1%)	81	86
37	Li	86/89~(97%)	86 (100%)	0	100	100
38	Lj	164/165~(99%)	164 (100%)	0	100	100
39	Lk	63/65~(97%)	63 (100%)	0	100	100
40	Ll	107/120~(89%)	107 (100%)	0	100	100
41	Lm	90/115~(78%)	90 (100%)	0	100	100
42	Ln	104/133~(78%)	104 (100%)	0	100	100
43	Lo	48/90~(53%)	48 (100%)	0	100	100
44	Lp	71/75~(95%)	71 (100%)	0	100	100
45	Lz	179/181~(99%)	179 (100%)	0	100	100
46	NC	25/25~(100%)	25 (100%)	0	100	100
47	S1	200/231~(87%)	200 (100%)	0	100	100
50	SA	182/242~(75%)	182 (100%)	0	100	100
51	SB	215/509~(42%)	215 (100%)	0	100	100
52	SC	185/225~(82%)	183 (99%)	2 (1%)	70	76
53	SD	157/170~(92%)	157 (100%)	0	100	100
54	SE	224/225~(100%)	224 (100%)	0	100	100
55	SG	199/218~(91%)	199 (100%)	0	100	100
56	SH	168/174~(97%)	168 (100%)	0	100	100
57	SI	179/180~(99%)	178 (99%)	1 (1%)	84	88
58	SJ	160/168~(95%)	160 (100%)	0	100	100
59	SK	188/202~(93%)	187 (100%)	1 (0%)	86	90
60	SL	130/142~(92%)	130 (100%)	0	100	100
61	SM	88/136~(65%)	88 (100%)	0	100	100
62	SN	130/131~(99%)	130 (100%)	0	100	100
63	SO	99/118 (84%)	98~(99%)	1 (1%)	73	78

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
64	SP	111/130~(85%)	111 (100%)	0	100	100
65	SQ	115/121~(95%)	114 (99%)	1 (1%)	75	81
66	SS	119/122~(98%)	119 (100%)	0	100	100
67	ST	127/132~(96%)	126 (99%)	1 (1%)	79	84
68	SU	111/115~(96%)	111 (100%)	0	100	100
69	SV	67/67~(100%)	67~(100%)	0	100	100
70	SW	112/113~(99%)	111 (99%)	1 (1%)	75	81
71	SX	111/114~(97%)	110 (99%)	1 (1%)	75	81
72	SY	107/114~(94%)	107~(100%)	0	100	100
73	SZ	92/107~(86%)	92~(100%)	0	100	100
74	Sa	86/98~(88%)	86 (100%)	0	100	100
75	Sb	75/76~(99%)	75~(100%)	0	100	100
76	Sc	74/103~(72%)	74 (100%)	0	100	100
77	Sd	55/62~(89%)	55~(100%)	0	100	100
78	Se	45/104~(43%)	45 (100%)	0	100	100
79	Sf	48/49~(98%)	48 (100%)	0	100	100
80	Sg	263/275~(96%)	261~(99%)	2 (1%)	79	84
81	So	24/24~(100%)	24 (100%)	0	100	100
82	Sy	$\overline{103/108}~(95\%)$	103 (100%)	0	100	100
83	Sz	$\overline{66/140} \ (47\%)$	62 (94%)	4 (6%)	15	12
All	All	9989/11356~(88%)	9965 (100%)	24 (0%)	91	94

5 of 24 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
65	SQ	127	CYS
71	SX	105	PHE
70	SW	97	ARG
80	Sg	132	TRP
27	LY	117	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
40	Ll	30	ASN
55	SG	146	ASN
80	Sg	187	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	L1	145/157~(92%)	12 (8%)	0
2	L5	3508/5069~(69%)	516 (14%)	10 (0%)
4	L9	119/121~(98%)	9~(7%)	0
48	S2	1649/1869~(88%)	246 (14%)	4 (0%)
49	S5	8/9~(88%)	1 (12%)	0
6	S4	75/76~(98%)	24 (32%)	2(2%)
All	All	5504/7301~(75%)	808 (14%)	16 (0%)

5 of 808 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	L1	34	U
1	L1	35	С
1	L1	48	А
1	L1	59	А
1	L1	62	А

5 of 16 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
48	S2	912	С
48	S2	874	G
2	L5	3876	А
48	S2	836	G
2	L5	2587	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

235 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Ъ (Г. 1	—		D	T ! 1-	B	ond leng	gths	B	ond ang	les
IVIOI	Tybe	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
48	PSU	S2	34	48	18,21,22	1.39	3 (16%)	21,30,33	2.02	4 (19%)
48	A2M	S2	576	48,85	18,25,26	1.32	1 (5%)	20,36,39	0.94	1 (5%)
2	OMC	L5	1340	2	19,22,23	0.80	0	25,31,34	0.85	1 (4%)
2	PSU	L5	2508	2	18,21,22	1.32	3 (16%)	21,30,33	2.00	4 (19%)
2	OMU	L5	2415	2	19,22,23	1.25	4 (21%)	25,31,34	1.72	5 (20%)
2	PSU	L5	4293	2	18,21,22	1.38	2 (11%)	21,30,33	2.01	3 (14%)
2	PSU	L5	3715	2	18,21,22	1.37	2 (11%)	21,30,33	2.02	4 (19%)
48	4AC	S2	1842	48,85	21,24,25	<mark>3.13</mark>	11 (52%)	28,34,37	0.98	1 (3%)
2	A2M	L5	4523	2,84	18,25,26	1.32	1 (5%)	20,36,39	1.35	3 (15%)
6	H2U	S4	47	6	18,21,22	0.63	0	19,30,33	0.45	0
2	OMU	L5	4620	2	19,22,23	1.23	3 (15%)	25,31,34	1.64	5 (20%)
48	OMG	S2	644	48	19,26,27	0.89	1 (5%)	21,38,41	1.09	2 (9%)
48	OMG	S2	1328	48,85	19,26,27	0.88	1 (5%)	21,38,41	1.03	2(9%)
2	OMG	L5	1522	2	19,26,27	0.89	1 (5%)	21,38,41	1.14	2 (9%)
48	MA6	S2	1850	48	19,26,27	1.12	2 (10%)	18,38,41	2.21	6 (33%)
2	PSU	L5	3768	2	18,21,22	1.37	2 (11%)	21,30,33	2.20	4 (19%)
48	PSU	S2	681	48	18,21,22	1.32	2 (11%)	21,30,33	2.08	4 (19%)
48	PSU	S2	105	48	18,21,22	1.35	2 (11%)	21,30,33	2.05	3 (14%)
2	OMC	L5	2861	2	19,22,23	0.78	0	25,31,34	0.80	0
2	OMG	L5	3744	2	19,26,27	0.88	1 (5%)	21,38,41	1.04	2 (9%)
2	PSU	L5	3851	2	18,21,22	1.39	2 (11%)	21,30,33	1.98	5 (23%)
2	OMC	L5	1881	2,84	19,22,23	0.77	0	25,31,34	0.96	1 (4%)
6	OMG	S4	18	6	19,26,27	1.08	3 (15%)	21,38,41	0.73	1 (4%)
2	OMG	L5	4618	2	19,26,27	0.89	1 (5%)	21,38,41	1.07	2 (9%)
48	OMC	S2	1391	48	19,22,23	0.79	0	25,31,34	0.81	0
2	UY1	L5	3818	$2,\!85$	19,22,23	1.55	5 (26%)	21,31,34	1.88	5 (23%)
2	PSU	L5	3637	$2,\!85$	18,21,22	1.34	2 (11%)	21,30,33	2.13	4 (19%)
48	A2M	S2	159	48	18,25,26	1.39	3 (16%)	20,36,39	0.99	2(10%)
48	OMU	S2	172	48	19,22,23	1.20	2 (10%)	25,31,34	1.89	5 (20%)
2	OMU	L5	3925	2	19,22,23	1.23	2 (10%)	25,31,34	1.85	5 (20%)
48	PSU	S2	814	48	18,21,22	1.39	2 (11%)	21,30,33	2.04	4 (19%)
48	PSU	S2	651	48	18,21,22	1.36	2 (11%)	21,30,33	2.12	4 (19%)
48	PSU	S2	1045	48	18,21,22	1.37	2 (11%)	21,30,33	2.09	4 (19%)

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tune	Chain	Dec	Link	B	ond leng	gths	B	ond ang	jles
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	A2M	L5	4571	2	18,25,26	1.38	1 (5%)	20,36,39	0.97	1 (5%)
2	A2M	L5	1534	2,84	18,25,26	1.40	1 (5%)	20,36,39	1.23	2 (10%)
2	PSU	L5	4420	2	18,21,22	1.40	2 (11%)	21,30,33	2.00	4 (19%)
48	PSU	S2	1445	48	18,21,22	1.38	2 (11%)	21,30,33	2.07	4 (19%)
48	4AC	S2	1337	48	21,24,25	3.20	11 (52%)	28,34,37	1.08	3 (10%)
63	IAS	SO	138	63	6,7,8	1.10	0	3,8,10	2.15	1 (33%)
2	PSU	L5	4471	2	18,21,22	1.44	3 (16%)	21,30,33	1.95	4 (19%)
2	OMC	L5	2351	2,84	19,22,23	0.78	0	25,31,34	0.92	1 (4%)
2	5MC	L5	4447	$2,\!85$	19,22,23	1.70	3 (15%)	26,32,35	1.27	2 (7%)
2	PSU	L5	4552	2	18,21,22	1.33	2 (11%)	21,30,33	2.21	3 (14%)
48	PSU	S2	93	48	18,21,22	1.39	3 (16%)	21,30,33	2.02	3 (14%)
2	OMG	L5	2050	2	19,26,27	0.85	1 (5%)	21,38,41	1.08	1 (4%)
2	PSU	L5	3770	2	18,21,22	1.38	2 (11%)	21,30,33	2.03	4 (19%)
2	PSU	L5	4521	2,85,84	18,21,22	1.36	2 (11%)	21,30,33	2.11	4 (19%)
2	PSU	L5	1792	2,85	18,21,22	1.32	2 (11%)	21,30,33	1.98	3 (14%)
43	M3L	Lo	98	43	10,11,12	1.04	0	9,14,16	0.67	0
6	H2U	S4	20	6	18,21,22	0.68	1 (5%)	19,30,33	0.51	0
2	PSU	L5	4576	2	18,21,22	1.36	2 (11%)	21,30,33	2.08	3 (14%)
2	OMU	L5	4227	2	19,22,23	1.24	3 (15%)	25,31,34	1.83	5 (20%)
2	PSU	L5	3730	2	18,21,22	1.36	2 (11%)	21,30,33	2.01	4 (19%)
2	A2M	L5	3867	2	18,25,26	1.36	1 (5%)	20,36,39	0.93	1 (5%)
2	OMG	L5	4499	2	19,26,27	0.87	1 (5%)	21,38,41	1.13	2 (9%)
2	A2M	L5	3830	2	18,25,26	1.42	1 (5%)	20,36,39	1.05	1 (5%)
2	PSU	L5	4628	2	18,21,22	1.36	2 (11%)	21,30,33	2.03	4 (19%)
6	PSU	S4	27	6	18,21,22	0.92	1 (5%)	21,30,33	0.66	0
48	A2M	S2	1383	48	18,25,26	1.29	1 (5%)	20,36,39	1.29	3 (15%)
48	OMG	S2	683	48	19,26,27	0.88	1 (5%)	21,38,41	1.12	2 (9%)
6	PSU	S4	55	6	18,21,22	0.92	1 (5%)	21,30,33	0.72	0
2	PSU	L5	5001	2	18,21,22	1.35	2 (11%)	21,30,33	2.09	3 (14%)
2	OMU	L5	2837	2	19,22,23	1.25	3 (15%)	25,31,34	1.90	5 (20%)
2	A2M	L5	1326	2	18,25,26	1.33	1 (5%)	20,36,39	0.93	0
2	PSU	L5	1781	2	18,21,22	1.43	3 (16%)	21,30,33	1.99	3 (14%)
48	PSU	S2	1367	48	18,21,22	1.38	2 (11%)	21,30,33	2.02	4 (19%)
2	JMH	L5	1456	2	18,22,23	2.83	6 (33%)	23,32,35	0.91	1 (4%)
48	PSU	S2	406	48	18,21,22	1.38	3 (16%)	21,30,33	<mark>2.11</mark>	4 (19%)

Mal	Turne	Chain	Dec	Link	В	ond leng	gths	В	ond ang	les
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
48	PSU	S2	1174	$48,\!85$	18,21,22	1.37	2 (11%)	21,30,33	2.05	3 (14%)
48	A2M	S2	484	48	18,25,26	1.22	1 (5%)	20,36,39	0.81	0
8	V5N	LD	216	8	4,11,12	1.47	1 (25%)	5,14,16	1.99	2 (40%)
2	OMG	L5	2364	2	19,26,27	0.82	1 (5%)	21,38,41	1.13	3 (14%)
71	HY3	SX	62	71,85	7,8,9	0.98	0	7,10,12	1.08	1 (14%)
2	A2M	L5	1524	2	18,25,26	1.37	2 (11%)	20,36,39	1.23	1 (5%)
2	OMG	L5	4637	$2,\!85$	19,26,27	0.86	1 (5%)	21,38,41	1.15	3 (14%)
48	PSU	S2	210	48	18,21,22	1.37	2 (11%)	21,30,33	1.98	4 (19%)
6	1MG	S4	37	6	19,26,27	1.11	1 (5%)	18,39,42	0.94	1 (5%)
2	PSU	L5	3762	2	18,21,22	1.42	2 (11%)	21,30,33	2.10	4 (19%)
2	OMG	L5	3792	2,85	19,26,27	0.90	1 (5%)	21,38,41	1.02	1 (4%)
2	PSU	L5	4423	2	18,21,22	1.34	2 (11%)	21,30,33	2.09	4 (19%)
33	MLZ	Le	53	33	8,9,10	0.68	0	4,9,11	0.80	0
48	PSU	S2	119	48	18,21,22	1.37	2 (11%)	21,30,33	2.04	3 (14%)
2	PSU	L5	3884	2	18,21,22	1.40	3 (16%)	21,30,33	2.03	4 (19%)
2	PSU	L5	4299	2	18,21,22	1.39	3 (16%)	21,30,33	1.96	4 (19%)
2	OMG	L5	4494	2	19,26,27	0.89	1 (5%)	21,38,41	1.05	2 (9%)
48	PSU	S2	1177	48	18,21,22	1.34	2 (11%)	21,30,33	2.19	4 (19%)
2	PSU	L5	3734	2	18,21,22	1.41	2 (11%)	21,30,33	2.03	3 (14%)
2	OMU	L5	4306	2	19,22,23	1.24	3 (15%)	25,31,34	1.75	4 (16%)
30	MLZ	Lb	5	30	8,9,10	0.65	0	4,9,11	0.96	0
48	PSU	S2	109	48	18,21,22	1.37	3 (16%)	21,30,33	2.01	3 (14%)
2	OMG	L5	1760	2	19,26,27	0.89	1 (5%)	21,38,41	1.02	2 (9%)
48	OMU	S2	121	48	19,22,23	1.19	3 (15%)	25,31,34	1.80	5 (20%)
2	A2M	L5	3825	2	18,25,26	1.34	1 (5%)	20,36,39	0.94	1 (5%)
48	PSU	S2	823	48	18,21,22	1.35	2 (11%)	21,30,33	2.11	5 (23%)
48	PSU	S2	1347	48	18,21,22	1.36	2 (11%)	21,30,33	2.16	4 (19%)
2	PSU	L5	1677	2	18,21,22	1.44	3 (16%)	21,30,33	2.08	4 (19%)
2	PSU	L5	1744	$2,\!85$	18,21,22	1.33	2 (11%)	21,30,33	2.08	4 (19%)
2	A2M	L5	3785	2	18,25,26	1.36	1 (5%)	20,36,39	1.91	2 (10%)
2	UR3	L5	4530	2	19,22,23	0.94	0	26,32,35	1.70	2 (7%)
48	OMC	S2	1703	48,84	19,22,23	0.76	0	25,31,34	0.78	0
48	OMU	S2	627	48	19,22,23	1.20	2 (10%)	25,31,34	1.77	5 (20%)
2	OMC	L5	4536	2	19,22,23	0.76	0	25,31,34	0.87	0
48	PSU	S2	815	48	18,21,22	1.38	2 (11%)	21,30,33	2.07	4 (19%)

Mal	Tuno	Chain	Dog	Link	Bond lengths		Bond angles			
	туре	Chan	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
2	PSU	L5	4500	2	18,21,22	1.36	2 (11%)	21,30,33	2.11	5 (23%)
2	PSU	L5	4296	2	18,21,22	1.40	2 (11%)	21,30,33	2.08	4 (19%)
2	OMG	L5	3899	2	19,26,27	0.87	1 (5%)	21,38,41	1.17	1 (4%)
2	PSU	L5	3920	2,84	18,21,22	1.38	2 (11%)	21,30,33	2.13	6 (28%)
2	OMG	L5	2876	2	19,26,27	0.83	1 (5%)	21,38,41	1.09	3 (14%)
2	OMG	L5	4228	2	19,26,27	0.93	1 (5%)	21,38,41	1.19	2 (9%)
2	A2M	L5	398	2	18,25,26	1.43	2 (11%)	20,36,39	0.97	1 (5%)
48	PSU	S2	1004	48	18,21,22	1.39	2 (11%)	21,30,33	2.04	4 (19%)
48	PSU	S2	1643	48,84	18,21,22	1.34	2 (11%)	21,30,33	2.01	4 (19%)
48	PSU	S2	1046	48	18,21,22	1.35	2 (11%)	21,30,33	1.91	4 (19%)
6	H2U	S4	16	6	18,21,22	0.63	0	19,30,33	0.54	0
48	PSU	S2	1056	48	18,21,22	1.37	3 (16%)	21,30,33	1.97	4 (19%)
48	PSU	S2	609	48	18,21,22	1.38	2 (11%)	21,30,33	1.99	3 (14%)
48	MA6	S2	1851	48	19,26,27	1.11	2 (10%)	18,38,41	2.30	6 (33%)
2	A2M	L5	4590	2	18,25,26	1.39	1 (5%)	20,36,39	1.03	0
48	OMG	S2	436	48	19,26,27	0.88	1 (5%)	21,38,41	1.09	2 (9%)
2	OMG	L5	4370	2	19,26,27	0.85	1 (5%)	21,38,41	1.13	2 (9%)
48	PSU	S2	866	48	18,21,22	1.39	2 (11%)	21,30,33	2.05	3 (14%)
2	PSU	L5	4673	2	18,21,22	1.38	2 (11%)	21,30,33	2.08	4 (19%)
2	PSU	L5	1860	2	18,21,22	1.37	3(16%)	21,30,33	1.92	4 (19%)
48	PSU	S2	649	48	18,21,22	1.37	2 (11%)	21,30,33	2.05	3 (14%)
48	OMU	S2	1288	48	19,22,23	1.21	2 (10%)	25,31,34	1.90	6 (24%)
48	OMG	S2	601	48	19,26,27	0.87	1 (5%)	21,38,41	1.06	2 (9%)
2	PSU	L5	1862	2	18,21,22	1.35	2 (11%)	21,30,33	2.07	4 (19%)
5	HIC	LB	245	5	8,11,12	1.19	0	5,14,16	1.09	0
48	OMU	S2	116	48	19,22,23	1.20	3 (15%)	25,31,34	1.82	5 (20%)
48	A2M	S2	668	48,84	18,25,26	1.40	2 (11%)	20,36,39	1.36	2 (10%)
48	OMC	S2	1710	48	19,22,23	0.80	0	25,31,34	0.96	1 (4%)
1	PSU	L1	69	1	18,21,22	1.44	2 (11%)	21,30,33	2.14	5 (23%)
2	OMU	L5	1773	2	19,22,23	1.22	3 (15%)	25,31,34	1.84	5 (20%)
1	OMG	L1	75	1	19,26,27	0.86	1 (5%)	21,38,41	1.14	2 (9%)
2	OMC	L5	3887	2	19,22,23	0.78	0	25,31,34	0.83	0
2	OMG	L5	4392	2	19,26,27	0.83	0	21,38,41	1.14	1 (4%)
2	PSU	L5	3853	2,84	18,21,22	1.40	2 (11%)	21,30,33	2.01	3 (14%)
48	A2M	S2	166	48	18,25,26	1.41	2 (11%)	20,36,39	1.06	1 (5%)

Mal	Trune	Chain	Dec	Tinle	Bond lengths		Bond angles			
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
48	OMG	S2	867	48	19,26,27	0.87	1(5%)	21,38,41	1.12	2 (9%)
2	OMC	L5	3841	2	19,22,23	0.78	0	25,31,34	0.79	0
48	OMC	S2	517	48	19,22,23	0.78	0	25,31,34	0.83	0
2	PSU	L5	4353	2	18,21,22	1.32	3(16%)	21,30,33	2.05	4 (19%)
48	OMU	S2	428	48	19,22,23	1.18	2 (10%)	25,31,34	1.84	5 (20%)
48	OMG	S2	509	48,84	19,26,27	0.93	1 (5%)	21,38,41	1.03	2 (9%)
48	PSU	S2	1238	48	18,21,22	1.39	2 (11%)	21,30,33	2.13	4 (19%)
2	OMC	L5	3701	$2,\!85$	19,22,23	0.77	0	25,31,34	0.87	1 (4%)
1	PSU	L1	55	1	18,21,22	1.39	3 (16%)	21,30,33	2.13	4 (19%)
2	PSU	L5	3764	2	18,21,22	1.36	2 (11%)	21,30,33	1.97	3 (14%)
48	A2M	S2	99	48,84	18,25,26	1.38	1 (5%)	20,36,39	1.00	0
29	V5N	La	39	29	4,11,12	1.29	0	5,14,16	2.28	2 (40%)
48	OMC	S2	174	48	19,22,23	0.79	0	25,31,34	0.83	0
48	OMU	S2	1442	48	19,22,23	1.24	4 (21%)	25,31,34	1.80	4 (16%)
2	OMC	L5	3808	2	19,22,23	0.75	0	25,31,34	0.78	0
2	PSU	L5	4532	2	18,21,22	1.42	3 (16%)	21,30,33	2.03	3 (14%)
48	A2M	S2	1031	48	18,25,26	1.35	2 (11%)	20,36,39	1.08	1 (5%)
2	OMC	L5	3869	2	19,22,23	0.76	0	25,31,34	0.71	0
2	2MG	L5	729	2	18,26,27	1.50	3 (16%)	16,38,41	2.00	4 (25%)
2	PSU	L5	3758	2	18,21,22	1.37	3 (16%)	21,30,33	2.03	4 (19%)
2	PSU	L5	4689	2	18,21,22	1.42	3 (16%)	21,30,33	2.04	4 (19%)
2	PSU	L5	4442	2	18,21,22	1.38	2 (11%)	21,30,33	2.07	4 (19%)
48	A2M	S2	468	48	18,25,26	1.41	1 (5%)	20,36,39	1.04	2 (10%)
2	OMC	L5	4456	2	19,22,23	0.78	0	25,31,34	0.88	1 (4%)
48	PSU	S2	1081	48	18,21,22	1.42	2 (11%)	21,30,33	2.09	5 (23%)
48	PSU	S2	863	48	18,21,22	1.36	2 (11%)	21,30,33	2.08	4 (19%)
2	OMG	L5	1316	2	19,26,27	0.90	1 (5%)	21,38,41	1.08	1 (4%)
2	PSU	L5	4579	2	18,21,22	1.38	<mark>2 (11%)</mark>	21,30,33	2.05	3 (14%)
6	1MG	S4	9	84,6	19,26,27	1.12	2 (10%)	18,39,42	1.01	1 (5%)
48	PSU	S2	1625	48	18,21,22	1.36	2 (11%)	21,30,33	2.02	3 (14%)
2	PSU	L5	3639	2	18,21,22	1.41	2 (11%)	21,30,33	2.08	6 (28%)
2	A2M	L5	2401	2	18,25,26	1.35	1 (5%)	20,36,39	0.86	0
2	OMC	L5	2824	2	19,22,23	0.78	0	25,31,34	0.74	0
2	2MG	L5	4872	2	18,26,27	1.48	3 (16%)	16,38,41	1.99	4 (25%)
2	A2M	L5	400	2	18,25,26	1.32	1 (5%)	20,36,39	0.99	0
2	PSU	L5	1582	2	18,21,22	1.41	2 (11%)	21,30,33	2.05	3 (14%)

Mal	Tune	Chain	Dec	Link Bond lengths			B	Bond angles		
	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
48	OMG	S2	1490	48,84	$19,\!26,\!27$	0.87	1 (5%)	21,38,41	0.99	1 (4%)
2	A2M	L5	1871	2,84	18,25,26	1.40	2 (11%)	20,36,39	1.13	1 (5%)
48	PSU	S2	1232	48	18,21,22	1.38	2 (11%)	21,30,33	2.02	3 (14%)
48	A2M	S2	1678	48	18,25,26	1.46	2 (11%)	20,36,39	1.06	1 (5%)
2	PSU	L5	3844	2	18,21,22	1.38	3 (16%)	21,30,33	2.03	3 (14%)
2	PSU	L5	3695	2,85,84	18,21,22	1.35	2 (11%)	21,30,33	2.15	5 (23%)
2	PSU	L5	4431	2	18,21,22	1.35	2 (11%)	21,30,33	2.07	4 (19%)
2	2MG	L5	1517	2	18,26,27	1.49	3 (16%)	16,38,41	1.99	4 (25%)
2	PSU	L5	4361	2	18,21,22	1.36	2 (11%)	21,30,33	1.98	3 (14%)
2	PSU	L5	4403	2	18,21,22	1.38	2 (11%)	21,30,33	2.04	4 (19%)
2	PSU	L5	2632	2	18,21,22	1.42	3 (16%)	21,30,33	2.02	3 (14%)
2	A2M	L5	2363	2,84	18,25,26	1.35	1 (5%)	20,36,39	1.05	1 (5%)
48	PSU	S2	36	48	18,21,22	1.39	3 (16%)	21,30,33	1.97	4 (19%)
48	7MG	S2	1639	48,6	23,26,27	1.09	1 (4%)	27,39,42	0.85	2 (7%)
2	1MA	L5	1322	2,84	17,25,26	1.12	2 (11%)	17,37,40	1.38	3 (17%)
2	A2M	L5	2815	2	18,25,26	1.30	1 (5%)	20,36,39	0.85	0
2	OMC	L5	2804	2	19,22,23	0.79	1 (5%)	25,31,34	0.75	0
2	5MC	L5	3782	2,84	19,22,23	1.65	3 (15%)	26,32,35	1.04	2 (7%)
2	A2M	L5	3760	2,48	18,25,26	1.28	1 (5%)	20,36,39	1.05	0
2	PSU	L5	4457	2	18,21,22	1.33	2 (11%)	21,30,33	2.08	4 (19%)
2	OMG	L5	3944	2	19,26,27	0.90	1 (5%)	21,38,41	1.05	1 (4%)
2	OMC	L5	2422	2,84	19,22,23	0.79	0	25,31,34	0.74	0
2	A2M	L5	2787	2	$18,\!25,\!26$	1.36	1 (5%)	20,36,39	1.07	1 (5%)
2	OMG	L5	4196	2,6	19,26,27	0.83	1 (5%)	21,38,41	1.08	2 (9%)
48	A2M	S2	512	48	18,25,26	1.41	1 (5%)	20,36,39	0.95	0
48	PSU	S2	218	48	18,21,22	1.38	3 (16%)	21,30,33	1.96	4 (19%)
48	PSU	S2	966	48	18,21,22	1.39	3 (16%)	21,30,33	2.02	4 (19%)
2	PSU	L5	1683	2,85	18,21,22	1.36	2 (11%)	21,30,33	2.06	4 (19%)
48	A2M	S2	27	48,84	18,25,26	1.36	1 (5%)	20,36,39	1.02	1 (5%)
48	6MZ	S2	1832	48,85,84	17,25,26	0.88	1 (5%)	15,36,39	2.54	3 (20%)
2	PSU	L5	1782	2	18,21,22	1.36	2 (11%)	21,30,33	2.09	3 (14%)
2	A2M	L5	3718	2	18,25,26	1.26	1 (5%)	20,36,39	1.10	2 (10%)
2	OMG	L5	4623	2	19,26,27	0.92	1 (5%)	21,38,41	1.13	2 (9%)
2	PSU	L5	5010	2	18,21,22	1.36	2 (11%)	21,30,33	2.01	3 (14%)
2	OMU	L5	4498	2	19,22,23	1.20	3 (15%)	25,31,34	1.91	5 (20%)

Mal	Type Chain Bes Link		Link	B	ond leng	gths	B	ond ang	les	
WIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
48	PSU	S2	686	48	18,21,22	1.37	2 (11%)	21,30,33	2.03	4 (19%)
2	PSU	L5	4972	2	18,21,22	1.35	2 (11%)	21,30,33	2.00	4 (19%)
6	1MA	S4	58	6	17,25,26	0.86	1 (5%)	17,37,40	0.77	0
6	M2G	S4	26	6	20,27,28	1.14	3 (15%)	19,40,43	0.73	0
2	6MZ	L5	4220	2	17,25,26	0.97	1 (5%)	15,36,39	2.38	3 (20%)
48	OMU	S2	799	48	19,22,23	1.25	4 (21%)	25,31,34	1.78	5 (20%)
48	PSU	S2	1244	48	18,21,22	1.36	2 (11%)	21,30,33	2.06	3 (14%)
2	OMG	L5	2424	2	19,26,27	0.86	1 (5%)	21,38,41	1.04	2 (9%)
48	OMU	S2	1804	48	19,22,23	1.24	3 (15%)	25,31,34	1.82	4 (16%)
48	OMU	S2	1326	48,84	19,22,23	1.21	3 (15%)	25,31,34	1.84	5 (20%)
6	5MU	S4	54	6	19,22,23	0.25	0	27,32,35	0.31	0
48	PSU	S2	572	48,85	18,21,22	1.41	2 (11%)	21,30,33	2.08	4 (19%)
2	PSU	L5	1536	2	18,21,22	1.37	2 (11%)	21,30,33	1.99	4 (19%)
2	PSU	L5	4636	2	18,21,22	1.41	3 (16%)	21,30,33	2.04	4 (19%)
48	OMC	S2	462	48	19,22,23	0.80	0	25,31,34	0.85	0
48	PSU	S2	801	48	18,21,22	1.39	3 (16%)	21,30,33	2.07	5 (23%)
48	PSU	S2	918	48	18,21,22	1.40	3 (16%)	21,30,33	2.10	5 (23%)
48	PSU	S2	822	48	18,21,22	1.36	2 (11%)	21,30,33	1.97	4 (19%)
2	OMG	L5	4870	2	19,26,27	0.89	1 (5%)	21,38,41	1.10	1 (4%)
2	PSU	L5	4312	2	18,21,22	1.36	2 (11%)	21,30,33	1.99	3 (14%)
48	A2M	S2	590	48	18,25,26	1.37	1 (5%)	20,36,39	1.31	1 (5%)
2	OMC	L5	2365	2	19,22,23	0.75	0	25,31,34	0.78	0
6	2MG	S4	10	6	18,26,27	1.10	3 (16%)	16,38,41	0.81	0
2	OMG	L5	1625	2,85	19,26,27	0.96	1 (5%)	21,38,41	1.06	2 (9%)
48	PSU	S2	1692	48	18,21,22	1.40	2 (11%)	21,30,33	2.06	4 (19%)
48	B8N	S2	1248	48	25,29,30	<mark>3.33</mark>	8 (32%)	28,42,45	2.04	8 (28%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
48	PSU	S2	34	48	-	0/7/25/26	0/2/2/2
48	A2M	S2	576	48,85	-	2/5/27/28	0/3/3/3
2	OMC	L5	1340	2	-	0/9/27/28	0/2/2/2
2	PSU	L5	2508	2	-	0/7/25/26	0/2/2/2

• • • • • •		I P P P P P P P P P P P P P P P P P P P	r Figure				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	OMU	L5	2415	2	-	0/9/27/28	0/2/2/2
2	PSU	L5	4293	2	-	0/7/25/26	0/2/2/2
2	PSU	L5	3715	2	-	0/7/25/26	0/2/2/2
48	4AC	S2	1842	48,85	-	0/11/29/30	0/2/2/2
2	A2M	L5	4523	2,84	-	0/5/27/28	0/3/3/3
6	H2U	S4	47	6	-	2/7/38/39	0/2/2/2
2	OMU	L5	4620	2	-	0/9/27/28	0/2/2/2
48	OMG	S2	644	48	-	1/5/27/28	0/3/3/3
48	OMG	S2	1328	48,85	-	0/5/27/28	0/3/3/3
2	OMG	L5	1522	2	-	0/5/27/28	0/3/3/3
48	MA6	S2	1850	48	-	0/7/29/30	0/3/3/3
2	PSU	L5	3768	2	-	0/7/25/26	0/2/2/2
48	PSU	S2	681	48	-	0/7/25/26	0/2/2/2
48	PSU	S2	105	48	-	0/7/25/26	0/2/2/2
2	OMC	L5	2861	2	-	0/9/27/28	0/2/2/2
2	OMG	L5	3744	2	-	0/5/27/28	0/3/3/3
2	PSU	L5	3851	2	-	2/7/25/26	0/2/2/2
2	OMC	L5	1881	2,84	-	0/9/27/28	0/2/2/2
6	OMG	S4	18	6	-	2/5/27/28	0/3/3/3
2	OMG	L5	4618	2	-	0/5/27/28	0/3/3/3
48	OMC	S2	1391	48	-	0/9/27/28	0/2/2/2
2	UY1	L5	3818	2,85	-	1/9/27/28	0/2/2/2
2	PSU	L5	3637	2,85	-	0/7/25/26	0/2/2/2
48	A2M	S2	159	48	-	0/5/27/28	0/3/3/3
48	OMU	S2	172	48	-	0/9/27/28	0/2/2/2
2	OMU	L5	3925	2	-	0/9/27/28	0/2/2/2
48	PSU	S2	814	48	-	0/7/25/26	0/2/2/2
48	PSU	S2	651	48	-	0/7/25/26	0/2/2/2
48	PSU	S2	1045	48	-	0/7/25/26	0/2/2/2
2	A2M	L5	4571	2	-	0/5/27/28	0/3/3/3
2	A2M	L5	1534	2,84	-	1/5/27/28	0/3/3/3
2	PSU	L5	4420	2	-	0/7/25/26	0/2/2/2
48	PSU	S2	1445	48	-	0/7/25/26	0/2/2/2
48	4AC	S2	1337	48	-	0/11/29/30	0/2/2/2
63	IAS	SO	138	63	-	1/7/7/8	-
2	PSU	L5	4471	2	-	0/7/25/26	0/2/2/2
2	OMC	L5	2351	2,84	-	2/9/27/28	0/2/2/2
2	5MC	L5	4447	2,85	-	4/7/25/26	0/2/2/2
2	PSU	L5	4552	2	-	0/7/25/26	0/2/2/2
48	PSU	S2	93	48	-	0/7/25/26	0/2/2/2
2	OMG	L5	2050	2	-	0/5/27/28	0/3/3/3

2 31000		<u>r</u>					
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	PSU	L5	3770	2	-	0/7/25/26	0/2/2/2
2	PSU	L5	4521	2,85,84	-	0/7/25/26	0/2/2/2
2	PSU	L5	1792	2,85	-	0/7/25/26	0/2/2/2
43	M3L	Lo	98	43	-	0/9/10/12	-
6	H2U	S4	20	6	_	2/7/38/39	0/2/2/2
2	PSU	L5	4576	2	-	0/7/25/26	0/2/2/2
2	OMU	L5	4227	2	-	0/9/27/28	0/2/2/2
2	PSU	L5	3730	2	-	0/7/25/26	0/2/2/2
2	A2M	L5	3867	2	-	1/5/27/28	0/3/3/3
2	OMG	L5	4499	2	-	1/5/27/28	0/3/3/3
2	A2M	L5	3830	2	-	0/5/27/28	0/3/3/3
2	PSU	L5	4628	2	-	0/7/25/26	0/2/2/2
6	PSU	S4	27	6	-	0/7/25/26	0/2/2/2
48	A2M	S2	1383	48	-	1/5/27/28	0/3/3/3
48	OMG	S2	683	48	-	1/5/27/28	0/3/3/3
6	PSU	S4	55	6	-	0/7/25/26	0/2/2/2
2	PSU	L5	5001	2	-	0/7/25/26	0/2/2/2
2	OMU	L5	2837	2	-	0/9/27/28	0/2/2/2
2	A2M	L5	1326	2	-	2/5/27/28	0/3/3/3
2	PSU	L5	1781	2	-	0/7/25/26	0/2/2/2
48	PSU	S2	1367	48	-	0/7/25/26	0/2/2/2
2	JMH	L5	1456	2	-	0/7/25/26	0/2/2/2
48	PSU	S2	406	48	-	0/7/25/26	0/2/2/2
48	PSU	S2	1174	48,85	-	0/7/25/26	0/2/2/2
48	A2M	S2	484	48	-	0/5/27/28	0/3/3/3
8	V5N	LD	216	8	-	1/5/10/12	0/1/1/1
2	OMG	L5	2364	2	-	1/5/27/28	0/3/3/3
71	HY3	SX	62	71,85	-	0/1/12/14	0/1/1/1
2	A2M	L5	1524	2	-	1/5/27/28	0/3/3/3
2	OMG	L5	4637	2,85	-	0/5/27/28	0/3/3/3
48	PSU	S2	210	48	-	0/7/25/26	0/2/2/2
6	1MG	S4	37	6	-	0/3/25/26	0/3/3/3
2	PSU	L5	3762	2	-	0/7/25/26	0/2/2/2
2	OMG	L5	3792	2,85	-	0/5/27/28	0/3/3/3
2	PSU	L5	4423	2	-	0/7/25/26	0/2/2/2
33	MLZ	Le	53	33	-	2/7/8/10	-
48	PSU	S2	119	48	-	0/7/25/26	0/2/2/2
2	PSU	L5	3884	2	-	0/7/25/26	0/2/2/2
2	PSU	L5	4299	2	_	0/7/25/26	0/2/2/2
2	OMG	L5	4494	2	-	0/5/27/28	0/3/3/3
48	PSU	S2	1177	48	-	0/7/25/26	0/2/2/2
2	PSU	L5	3734	2	-	0/7/25/26	0/2/2/2

001000	nucu jio		o page.	••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	OMU	L5	4306	2	_	0/9/27/28	0/2/2/2
30	MLZ	Lb	5	30	-	2/7/8/10	-
48	PSU	S2	109	48	-	0/7/25/26	0/2/2/2
2	OMG	L5	1760	2	-	0/5/27/28	0/3/3/3
48	OMU	S2	121	48	-	0/9/27/28	0/2/2/2
2	A2M	L5	3825	2	-	0/5/27/28	0/3/3/3
48	PSU	S2	823	48	-	0/7/25/26	0/2/2/2
48	PSU	S2	1347	48	-	0/7/25/26	0/2/2/2
2	PSU	L5	1677	2	-	0/7/25/26	0/2/2/2
2	PSU	L5	1744	2,85	-	0/7/25/26	0/2/2/2
2	A2M	L5	3785	2	-	1/5/27/28	0/3/3/3
2	UR3	L5	4530	2	-	0/7/25/26	0/2/2/2
48	OMC	S2	1703	48,84	_	0/9/27/28	0/2/2/2
48	OMU	S2	627	48	-	2/9/27/28	0/2/2/2
2	OMC	L5	4536	2	-	0/9/27/28	0/2/2/2
48	PSU	S2	815	48	-	0/7/25/26	0/2/2/2
2	PSU	L5	4500	2	-	3/7/25/26	0/2/2/2
2	PSU	L5	4296	2	-	0/7/25/26	0/2/2/2
2	OMG	L5	3899	2	-	0/5/27/28	0/3/3/3
2	PSU	L5	3920	2,84	-	0/7/25/26	0/2/2/2
2	OMG	L5	2876	2	-	0/5/27/28	0/3/3/3
2	OMG	L5	4228	2	-	0/5/27/28	0/3/3/3
2	A2M	L5	398	2	-	0/5/27/28	0/3/3/3
48	PSU	S2	1004	48	-	0/7/25/26	0/2/2/2
48	PSU	S2	1643	48,84	-	0/7/25/26	0/2/2/2
48	PSU	S2	1046	48	_	0/7/25/26	0/2/2/2
6	H2U	S4	16	6	-	3/7/38/39	0/2/2/2
48	PSU	S2	1056	48	_	0/7/25/26	0/2/2/2
48	PSU	S2	609	48	-	0/7/25/26	0/2/2/2
48	MA6	S2	1851	48	-	3/7/29/30	0/3/3/3
2	A2M	L5	4590	2	-	1/5/27/28	0/3/3/3
48	OMG	S2	436	48	-	0/5/27/28	0/3/3/3
2	OMG	L5	4370	2	-	0/5/27/28	0/3/3/3
48	PSU	S2	866	48	-	0/7/25/26	0/2/2/2
2	PSU	L5	4673	2	-	0/7/25/26	0/2/2/2
2	PSU	L5	1860	2	-	0/7/25/26	0/2/2/2
48	PSU	S2	649	48	-	0/7/25/26	0/2/2/2
48	OMU	S2	1288	48	-	0/9/27/28	0/2/2/2
48	OMG	S2	601	48	-	0/5/27/28	0/3/3/3
2	PSU	L5	1862	2	-	0/7/25/26	0/2/2/2
5	HIC	LB	245	5	_	0/5/6/8	0/1/1/1

00.000		ne precee	pago.	••			
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
48	OMU	S2	116	48	-	0/9/27/28	0/2/2/2
48	A2M	S2	668	48,84	-	2/5/27/28	0/3/3/3
48	OMC	S2	1710	48	-	0/9/27/28	0/2/2/2
1	PSU	L1	69	1	-	0/7/25/26	0/2/2/2
2	OMU	L5	1773	2	-	0/9/27/28	0/2/2/2
1	OMG	L1	75	1	-	0/5/27/28	0/3/3/3
2	OMC	L5	3887	2	-	0/9/27/28	0/2/2/2
2	OMG	L5	4392	2	-	0/5/27/28	0/3/3/3
2	PSU	L5	3853	2,84	-	0/7/25/26	0/2/2/2
48	A2M	S2	166	48	-	0/5/27/28	0/3/3/3
48	OMG	S2	867	48	-	0/5/27/28	0/3/3/3
2	OMC	L5	3841	2	-	0/9/27/28	0/2/2/2
48	OMC	S2	517	48	-	0/9/27/28	0/2/2/2
2	PSU	L5	4353	2	-	0/7/25/26	0/2/2/2
48	OMU	S2	428	48	-	4/9/27/28	0/2/2/2
48	OMG	S2	509	48,84	-	0/5/27/28	0/3/3/3
48	PSU	S2	1238	48	-	0/7/25/26	0/2/2/2
2	OMC	L5	3701	2,85	-	4/9/27/28	0/2/2/2
1	PSU	L1	55	1	-	0/7/25/26	0/2/2/2
2	PSU	L5	3764	2	-	0/7/25/26	0/2/2/2
48	A2M	S2	99	48,84	-	1/5/27/28	0/3/3/3
29	V5N	La	39	29	-	0/5/10/12	0/1/1/1
48	OMC	S2	174	48	-	1/9/27/28	0/2/2/2
48	OMU	S2	1442	48	-	0/9/27/28	0/2/2/2
2	OMC	L5	3808	2	-	0/9/27/28	0/2/2/2
2	PSU	L5	4532	2	-	0/7/25/26	0/2/2/2
48	A2M	S2	1031	48	-	0/5/27/28	0/3/3/3
2	OMC	L5	3869	2	-	1/9/27/28	0/2/2/2
2	2MG	L5	729	2	-	0/5/27/28	0/3/3/3
2	PSU	L5	3758	2	-	0/7/25/26	0/2/2/2
2	PSU	L5	4689	2	-	0/7/25/26	0/2/2/2
2	PSU	L5	4442	2	-	0/7/25/26	0/2/2/2
48	A2M	S2	468	48	-	0/5/27/28	0/3/3/3
2	OMC	L5	4456	2	-	0/9/27/28	0/2/2/2
48	PSU	S2	1081	48	-	1/7/25/26	0/2/2/2
48	PSU	S2	863	48	-	0/7/25/26	0/2/2/2
2	OMG	L5	1316	2	-	0/5/27/28	0/3/3/3
2	PSU	L5	4579	2	-	0/7/25/26	0/2/2/2
6	1MG	S4	9	84,6	-	1/3/25/26	0/3/3/3
48	PSU	S2	1625	48	-	0/7/25/26	0/2/2/2
2	PSU	L5	3639	2	-	0/7/25/26	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	A2M	L5	2401	2	-	2/5/27/28	0/3/3/3
2	OMC	L5	2824	2	-	0/9/27/28	0/2/2/2
2	2MG	L5	4872	2	-	0/5/27/28	0/3/3/3
2	A2M	L5	400	2	-	0/5/27/28	0/3/3/3
2	PSU	L5	1582	2	-	0/7/25/26	0/2/2/2
48	OMG	S2	1490	48,84	-	1/5/27/28	0/3/3/3
2	A2M	L5	1871	2,84	-	0/5/27/28	0/3/3/3
48	PSU	S2	1232	48	-	0/7/25/26	0/2/2/2
48	A2M	S2	1678	48	-	1/5/27/28	0/3/3/3
2	PSU	L5	3844	2	-	1/7/25/26	0/2/2/2
2	PSU	L5	3695	$2,\!85,\!84$	-	0/7/25/26	0/2/2/2
2	PSU	L5	4431	2	-	0/7/25/26	0/2/2/2
2	2MG	L5	1517	2	-	0/5/27/28	0/3/3/3
2	PSU	L5	4361	2	-	0/7/25/26	0/2/2/2
2	PSU	L5	4403	2	-	0/7/25/26	0/2/2/2
2	PSU	L5	2632	2	-	0/7/25/26	0/2/2/2
2	A2M	L5	2363	2,84	-	1/5/27/28	0/3/3/3
48	PSU	S2	36	48	-	0/7/25/26	0/2/2/2
48	$7 \mathrm{MG}$	S2	1639	$48,\! 6$	-	2/7/37/38	0/3/3/3
2	1MA	L5	1322	2,84	-	0/3/25/26	0/3/3/3
2	A2M	L5	2815	2	-	0/5/27/28	0/3/3/3
2	OMC	L5	2804	2	-	0/9/27/28	0/2/2/2
2	5MC	L5	3782	2,84	-	0/7/25/26	0/2/2/2
2	A2M	L5	3760	2,48	-	4/5/27/28	0/3/3/3
2	PSU	L5	4457	2	-	0/7/25/26	0/2/2/2
2	OMG	L5	3944	2	-	2/5/27/28	0/3/3/3
2	OMC	L5	2422	2,84	-	0/9/27/28	0/2/2/2
2	A2M	L5	2787	2	-	1/5/27/28	0/3/3/3
2	OMG	L5	4196	2,6	-	0/5/27/28	0/3/3/3
48	A2M	S2	512	48	-	2/5/27/28	0/3/3/3
48	PSU	S2	218	48	-	0/7/25/26	0/2/2/2
48	PSU	S2	966	48	-	0/7/25/26	0/2/2/2
2	PSU	L5	1683	2,85	-	0/7/25/26	0/2/2/2
48	A2M	S2	27	48,84	-	0/5/27/28	0/3/3/3
48	6MZ	S2	1832	48,85,84	-	2/5/27/28	0/3/3/3
2	PSU	L5	1782	2	-	0/7/25/26	0/2/2/2
2	A2M	L5	3718	2	-	0/5/27/28	0/3/3/3
2	OMG	L5	4623	2	-	0/5/27/28	0/3/3/3
2	PSU	L5	5010	2	-	0/7/25/26	0/2/2/2
2	OMU	L5	4498	2	-	0/9/27/28	0/2/2/2
48	PSU	S2	686	48	-	0/7/25/26	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	PSU	L5	4972	2	-	0/7/25/26	0/2/2/2
6	1MA	S4	58	6	-	2/3/25/26	0/3/3/3
6	M2G	S4	26	6	-	0/7/29/30	0/3/3/3
2	6MZ	L5	4220	2	-	0/5/27/28	0/3/3/3
48	OMU	S2	799	48	-	1/9/27/28	0/2/2/2
48	PSU	S2	1244	48	-	0/7/25/26	0/2/2/2
2	OMG	L5	2424	2	-	0/5/27/28	0/3/3/3
48	OMU	S2	1804	48	-	0/9/27/28	0/2/2/2
48	OMU	S2	1326	48,84	-	0/9/27/28	0/2/2/2
6	5MU	S4	54	6	-	0/7/25/26	0/2/2/2
48	PSU	S2	572	48,85	-	0/7/25/26	0/2/2/2
2	PSU	L5	1536	2	-	0/7/25/26	0/2/2/2
2	PSU	L5	4636	2	-	2/7/25/26	0/2/2/2
48	OMC	S2	462	48	-	0/9/27/28	0/2/2/2
48	PSU	S2	801	48	-	0/7/25/26	0/2/2/2
48	PSU	S2	918	48	-	0/7/25/26	0/2/2/2
48	PSU	S2	822	48	-	0/7/25/26	0/2/2/2
2	OMG	L5	4870	2	-	3/5/27/28	0/3/3/3
2	PSU	L5	4312	2	-	0/7/25/26	0/2/2/2
48	A2M	S2	590	48	-	2/5/27/28	0/3/3/3
2	OMC	L5	2365	2	-	0/9/27/28	0/2/2/2
6	2MG	S4	10	6	-	0/5/27/28	0/3/3/3
2	OMG	L5	1625	2,85	-	1/5/27/28	0/3/3/3
48	PSU	S2	1692	48	-	0/7/25/26	0/2/2/2
48	B8N	S2	1248	48	-	4/16/34/35	0/2/2/2

The worst 5 of 423 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
48	S2	1248	B8N	C4-N3	-8.14	1.26	1.40
48	S2	1248	B8N	C6-N1	7.66	1.55	1.36
2	L5	1456	JMH	C2-N1	7.61	1.49	1.38
48	S2	1337	4AC	C4-N3	7.02	1.44	1.32
48	S2	1248	B8N	C4-C5	6.97	1.63	1.47

The worst 5 of 619 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
48	S2	1832	6MZ	C2-N1-C6	8.53	123.22	116.60
2	L5	4220	6MZ	C2-N1-C6	7.73	122.60	116.60
2	L5	3920	PSU	N1-C2-N3	6.85	122.39	115.17

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$\mathbf{Ideal}(^{o})$
1	L1	55	PSU	N1-C2-N3	6.77	122.31	115.17
2	L5	4530	UR3	C4-N3-C2	-6.77	119.13	124.58

There are no chirality outliers.

5 of 95 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	L5	3701	OMC	C2'-C1'-N1-C6
2	L5	3760	A2M	C1'-C2'-O2'-CM'
2	L5	4590	A2M	C4'-C5'-O5'-P
6	S4	18	OMG	C1'-C2'-O2'-CM2
6	S4	47	H2U	O4'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 429 ligands modelled in this entry, 428 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Dog	Link	Bo	ond leng	\mathbf{ths}	В	ond ang	les
Moi Type		Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2																			
86	B3P	L5	5129	-	18,18,18	0.72	0	23,23,23	0.97	1 (4%)																			

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
86	B3P	L5	5129	-	-	9/28/28/28	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
86	L5	5129	B3P	C11-C8-C10	-2.51	104.51	110.02

There are no chirality outliers.

5 of 9 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
86	L5	5129	B3P	N1-C4-C7-O6
86	L5	5129	B3P	C1-C2-N2-C8
86	L5	5129	B3P	C5-C4-N1-C3
86	L5	5129	B3P	C7-C4-N1-C3
86	L5	5129	B3P	C10-C8-N2-C2

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-45170. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 224

Y Index: 224

Z Index: 224

6.2.2 Raw map

X Index: 224

Y Index: 224

Z Index: 224

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 200

Z Index: 190

6.3.2 Raw map

X Index: 200

Y Index: 215

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0175. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1154 nm^3 ; this corresponds to an approximate mass of 1042 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.500 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.500 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.00	-	-
Author-provided FSC curve	1.99	2.34	2.02
Unmasked-calculated*	2.29	2.81	2.35

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.29 differs from the reported value 2.0 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-45170 and PDB model 9C3H. Per-residue inclusion information can be found in section 3 on page 26.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0175 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0175).

9.4 Atom inclusion (i)

At the recommended contour level, 79% of all backbone atoms, 80% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0175) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.7960	0.6840
L1	0.9300	0.7300
L5	0.8260	0.6900
L8	0.8170	0.6940
L9	0.9590	0.7290
LB	0.9070	0.7620
LC	0.9150	0.7580
LD	0.9670	0.7980
LE	0.8660	0.7310
LF	0.9190	0.7660
LG	0.8140	0.6910
LH	0.8680	0.7170
LI	0.9440	0.7780
LJ	0.7340	0.6530
LK	0.7900	0.6870
LM	0.8760	0.7220
LN	0.9900	0.7950
LO	0.8420	0.7120
LP	0.9570	0.7860
LQ	0.8410	0.7190
LR	0.7860	0.6910
LS	0.9430	0.7700
LT	0.8500	0.7320
LU	0.9290	0.7620
LV	0.9450	0.7820
LW	0.5460	0.5580
LY	0.9220	0.7670
LZ	0.8460	0.7070
La	0.9480	0.7810
Lb	0.7250	0.6580
Lc	0.8530	0.7260
Ld	0.8530	0.7320
Le	0.8710	0.7520
Lf	0.9610	0.7890
Lg	0.8900	0.7490

 $Continued \ on \ next \ page...$

Continued from previous page...

Chain	Atom inclusion	Q-score
Lh	0.8950	0.7620
Li	0.8220	0.7050
Lj	0.9580	0.7850
Lk	0.6380	0.6390
Ll	0.9330	0.7610
Lm	0.5580	0.5820
Ln	0.8940	0.7330
Lo	0.8970	0.7570
Lp	0.9380	0.7800
Lz	0.8890	0.7440
NC	0.7850	0.7310
S1	0.7900	0.7010
S2	0.8130	0.6640
S4	0.6970	0.6070
S5	0.6810	0.6390
SA	0.8100	0.6880
SB	0.1950	0.4830
SC	0.8710	0.7160
SD	0.7280	0.6620
SE	0.7310	0.6680
SG	0.4090	0.5340
SH	0.4950	0.5730
SI	0.7380	0.6670
SJ	0.7400	0.6660
SK	0.5540	0.5990
SL	0.8510	0.7180
SM	0.4130	0.5430
SN	0.8860	0.7330
SO	0.9000	0.7400
SP	0.4790	0.5850
SQ	0.6670	0.6440
SS	0.5800	0.6090
ST	0.5820	0.6090
SU	0.5910	0.6100
SV	0.8040	0.6990
SW	0.9320	0.7530
SX	0.9010	0.7420
SY	0.5650	0.6070
SZ	0.4730	0.5500
Sa	0.8770	0.7360
Sb	0.6980	0.6580
Sc	0.4800	0.5800

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
Sd	0.6380	0.6400
Se	0.6070	0.6140
Sf	0.7870	0.6790
Sg	0.2680	0.5080
So	0.8580	0.7470
Sy	0.0440	0.2790
Sz	0.0850	0.3440

