

wwPDB EM Validation Summary Report (i)

Oct 2, 2025 – 10:19 AM EDT

PDB ID : 9B3A / pdb 00009b3a

EMDB ID : EMD-44133

Title : filament of type 1 KD-mxyl miniature tau macrocycle derived from 4R tauo-

pathic fold

Authors: Xu, X.; Angera, J.I.; Rajewski, H.B.; Jiang, W.; Del Valle, R.J.

Deposited on : 2024-03-18

Resolution : 3.20 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org*A user guide is available at
https://www.wwpdb.org/validation/2017/EMValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis : 0.0.1.dev129

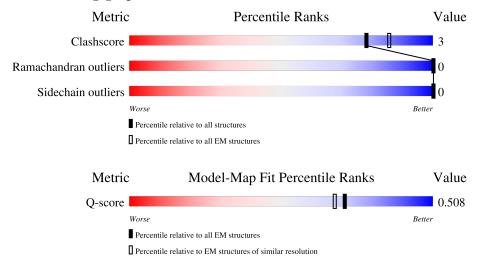
Mogul : 2022.3.0, CSD as543be (2022)

MolProbity : 4-5-2 with Phenix2.0

Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023) EM percentile statistics : 202505.v01 (Using data in the EMDB archive up until May 2025)

 $MapQ \quad : \quad 1.9.13$

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.46

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures	Similar EM resolution
Wietric	$(\# \mathbf{Entries})$	$(\# ext{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
Clashscore	210492	15764	-
Ramachandran outliers	207382	16835	-
Sidechain outliers	206894	16415	-
Q-score	-	25397	15020 (2.70 - 3.70)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion <40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A	22	82%	18%
1	С	22	91%	9%
1	Е	22	91%	9%
1	G	22	86%	14%

 $Continued\ from\ previous\ page...$

Mol	Chain	Length	Quality of chain			
1	I	22	86%	14%		
1	K	22	91%	9%		
1	M	22	91%	9%		
1	О	22	95%	5%		
1		22				
	Q		91%	9%		
1	S	22	100%			
1	U	22	95%	5%		
1	W	22	77%	23%		
1	Y	22	95%	5%		
1	a	22	86%	14%		
1	С	22	91%	9%		
2	В	7	86%	14%		
2	D	7	14%			
2	F	7	100%			
2	Н	7	100%			
2	J	7				
			100%			
2	L	7	100%			
2	N	7	100%			
2	Р	7	100%			
2	R	7	100%			
2	Т	7	100%			
2	V	7	100%			
2	X	7	86%	14%		
2	Z	7	100%			
2	b	7	14%			

Continued from previous page...

Mol	Chain	Length	Quality of chain
			29%
2	d	7	100%

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 3345 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Microtubule-associated protein tau.

Mol	Chain	Residues		At	oms			AltConf	Trace
1	A	22	Total	С	N	О	S	0	0
1	A	22	156	99	27	28	2	U	U
1	С	22	Total	С	N	О	S	0	0
1		22	156	99	27	28	2	U	U
1	Е	22	Total	С	N	О	S	0	0
1	ш	22	156	99	27	28	2	U	U
1	G	22	Total	С	N	О	S	0	0
1	d	22	156	99	27	28	2	O	U
1	I	22	Total	С	N	Ο	S	0	0
1	1	22	156	99	27	28	2	O	0
1	K	22	Total	С	N	О	S	0	0
1	17	22	156	99	27	28	2	O	U
1	M	22	Total	\mathbf{C}	N	Ο	S	0	0
1	111	22	156	99	27	28	2	· ·	
1	О	22	Total	С	N	Ο	S	0	
			156	99	27	28	2	U	U
1	Q	22	Total	С	N	О	S	0	0
	96		156	99	27	28	2	Ü	
1	S	22	Total	С	N	Ο	S	0	0
	~		156	99	27	28	2	Ü	
1	U	22	Total	С	N	Ο	S	0	0
	- C		156	99	27	28	2	Ü	
1	W	22	Total	С	N	О	S	0	0
	,,,		156	99	27	28	2	Ü	
1	Y	22	Total	С	N	О	S	0	0
	-		156	99	27	28	2	, ,	
1	a	22	Total	С	N	0	S	0	0
	~		156	99	27	28	2	, ,	
1	c	22	Total	С	N	0	S	0	0
	Ü		156	99	27	28	2		

There are 45 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	293	ACE	_	expression tag	UNP P10636
A	294	CYS	-	expression tag	UNP P10636
A	314	CYS	_	expression tag	UNP P10636
С	293	ACE	-	expression tag	UNP P10636
С	294	CYS	_	expression tag	UNP P10636
С	314	CYS	-	expression tag	UNP P10636
Е	293	ACE	-	expression tag	UNP P10636
Е	294	CYS	_	expression tag	UNP P10636
Е	314	CYS	-	expression tag	UNP P10636
G	293	ACE	-	expression tag	UNP P10636
G	294	CYS	-	expression tag	UNP P10636
G	314	CYS	-	expression tag	UNP P10636
I	293	ACE	-	expression tag	UNP P10636
I	294	CYS	-	expression tag	UNP P10636
I	314	CYS	-	expression tag	UNP P10636
K	293	ACE	-	expression tag	UNP P10636
K	294	CYS	-	expression tag	UNP P10636
K	314	CYS	-	expression tag	UNP P10636
M	293	ACE	-	expression tag	UNP P10636
M	294	CYS	-	expression tag	UNP P10636
M	314	CYS	_	expression tag	UNP P10636
О	293	ACE	-	expression tag	UNP P10636
О	294	CYS	_	expression tag	UNP P10636
О	314	CYS	_	expression tag	UNP P10636
Q	293	ACE	_	expression tag	UNP P10636
Q	294	CYS	-	expression tag	UNP P10636
Q	314	CYS	-	expression tag	UNP P10636
S	293	ACE	-	expression tag	UNP P10636
S	294	CYS	-	expression tag	
S	314	CYS	_	expression tag	UNP P10636
U	293	ACE	_	expression tag	UNP P10636
U	294	CYS	-	expression tag	UNP P10636
U	314	CYS	-	expression tag	UNP P10636
W	293	ACE	-	expression tag	UNP P10636
W	294	CYS	-	expression tag	UNP P10636
W	314	CYS	-	expression tag	UNP P10636
Y	293	ACE	-	expression tag	UNP P10636
Y	294	CYS	-	expression tag	UNP P10636
Y	314	CYS	-	expression tag	UNP P10636
a	293	ACE	-	expression tag	UNP P10636
a	294	CYS	-	expression tag	UNP P10636
a	314	CYS	-	expression tag	UNP P10636
c	293	ACE	-	expression tag	UNP P10636

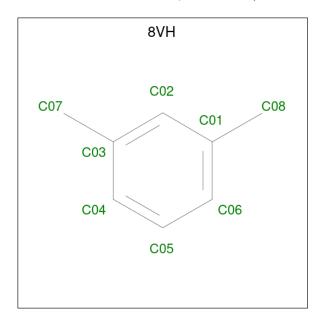
Continued from previous page...

Chain	Residue	Modelled	Actual	Comment	Reference
c	294	CYS	-	expression tag	UNP P10636
c	314	CYS	-	expression tag	UNP P10636

 \bullet Molecule 2 is a protein called SER-VAL-GLN-ILE-VAL-TYR-LYS.

2 B 7 Total C N O S 39 9 10 0 0 2 D 7 Total C N O S 39 9 10 0 0 2 F 7 Total C N O S 39 9 10 0 0 2 H 7 Total C N O S 39 9 10 0 0 2 J 7 Total C N O S 39 9 10 0 0 2 L 7 Total C N O S 39 9 10 0 0 2 N 7 Total C N O S 39 9 10 0 0 2 N 7 Total C N O S 39 9 10 0 0 2 P 7 Total C N O S 39 9 10 0 0 2 R 7 Total C N O S 39 9 10 0 0 2 T 7 Total C N O S 39 9 10 0 0 2 T 7 Total C N O S 39 9 10 0 0 2 T 7 Total C N O S 38 39 9 10 0 0 2 X 7 Total C N O S 38 39 9 10 0 0 2 D 7	Mol	Chain	Residues	Ato	ms		AltConf	Trace
2 D 7 Total C N O S8 39 9 10 0 0 2 F 7 Total C N O S8 39 9 10 0 0 2 H 7 Total C N O S8 39 9 10 0 0 2 J 7 Total C N O S8 39 9 10 0 0 2 L 7 Total C N O S8 39 9 10 0 0 2 N 7 Total C N O S8 39 9 10 0 0 2 P 7 Total C N O S8 39 9 10 0 0 2 R 7 Total C N O S8 39 9 10 0 0 2 T 7 Total C N O S8 39 9 10 0 0 2 T 7 Total C N O S8 39 9 10 0 0 2 V 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 D	2	В	7				0	0
2 F 7 58 39 9 10 0 0 2 F 7 Total C N O 0 0 2 H 7 Total C N O 0 0 2 J 7 Total C N O 0 0 2 L 7 Total C N O 0 0 2 N 7 Total C N O 0 0 2 N 7 Total C N O 0 0 2 P 7 Total C N O 0 0 2 P 7 Total C N O 0 0 2 R 7 Total C N O 0 0 2 T 7 Total C N O 0 0 2 X 7 Total C								
2 F 7 Total C N O S8 39 9 10 0 0 2 H 7 Total C N O S8 39 9 10 0 0 2 J 7 Total C N O S8 39 9 10 0 0 2 L 7 Total C N O S8 39 9 10 0 0 2 N 7 Total C N O S8 39 9 10 0 0 2 P 7 Total C N O S8 39 9 10 0 0 2 P 7 Total C N O S8 39 9 10 0 0 2 R 7 Total C N O S8 39 9 10 0 0 2 T 7 Total C N O S8 39 9 10 0 0 2 V 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 Z 7 Total C N O S8 39 9 10 0 0 2 D 7 Total C N O S8 39 9 10 0 0 2 D	2	D	7				0	0
2 H 7 58 39 9 10 0 0 2 H 7 Total C N O S8 39 9 10 0 0 2 J 7 Total C N O S8 39 9 10 0 0 2 L 7 Total C N O S8 39 9 10 0 0 2 N 7 Total C N O S8 39 9 10 0 0 2 P 7 Total C N O S8 39 9 10 0 0 2 R 7 Total C N O S8 39 9 10 0 0 2 T 7 Total C N O S8 39 9 10 0 0 2 V 7 Total C N O S8 39 9 10 0 0 2 V 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0								
2 H 7 Total C N O S8 39 9 10 0 0 2 J 7 Total C N O S8 39 9 10 0 0 2 L 7 Total C N O S8 39 9 10 0 0 2 N 7 Total C N O S8 39 9 10 0 0 2 P 7 Total C N O S8 39 9 10 0 0 2 R 7 Total C N O S8 39 9 10 0 0 2 T 7 Total C N O S8 39 9 10 0 0 2 T 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 Z 7 Total C N O S8 39 9 10 0 0 2 D 7 Total C N O S8 39 9 10 0 0 2 D 7 Total C N O S8 39 9 10 0 0 3 D	2	F	7				0	0
2 J 7 58 39 9 10 0 0 2 J 7 Total C N O 0 0 2 L 7 Total C N O 0 0 2 N 7 Total C N O 0 0 2 P 7 Total C N O 0 0 2 P 7 Total C N O 0 0 2 R 7 Total C N O 0 0 2 T 7 Total C N O 0 0 2 V 7 Total C N O 0 0 2 X 7 Total C N O 0 0 2 X 7 Total C N O 0 0 2 Z 7 Total C								
2 J 7 Total C N O S	2	Н	7				0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
2 L 7 Total C N O S8 39 9 10 9 10 9 0 9 10 9 10 9 10 9 10 9	$\frac{1}{2}$	J	7				0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•				Ü	
2 N 7 Total C N O 58 39 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	T.	7				0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		L	•				O	
2 P 7 Total C N O S8 39 9 10 0 0 0 2 R 7 Total C N O S8 39 9 10 0 0 0 2 T 7 Total C N O S8 39 9 10 0 0 0 2 V 7 Total C N O S8 39 9 10 0 0 0 2 X 7 Total C N O S8 39 9 10 0 0 0 2 Z 7 Total C N O S8 39 9 10 0 0 0 2 D Total C N O S8 39 9 10 0 0 0 0 2 D Total C N O S8 39 9 10 0 0 0 0 3 D Total C N O S8 39 9 10 0 0 0 0 0	2	N	7				0	0
2 P 7 58 39 9 10 0 0 2 R 7 Total C N O 58 39 9 10 0 0 2 T 7 Total C N O 58 39 9 10 0 0 2 V 7 Total C N O 58 39 9 10 0 0 2 X 7 Total C N O 58 39 9 10 0 0 2 Z 7 Total C N O 58 39 9 10 0 0 2 b 7 Total C N O 58 39 9 10 0 0 3 D Total C N O 58 39 9 10 0 0 0		11	•	58 39		10	O	
2 R 7 Total C N O S8 39 9 10 0 0 2 T 7 Total C N O S8 39 9 10 0 0 2 V 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 Z 7 Total C N O S8 39 9 10 0 0 2 b 7 Total C N O S8 39 9 10 0 0 3 Total C N O S8 39 9 10 0 0 0 3 Total C N O S8 39 9 10 0 0 0	9	D	7	Total C	Ν	O	0	0
2 R 7 58 39 9 10 0 0 2 T 7 Total C N O 58 39 9 10 0 0 2 V 7 Total C N O 58 39 9 10 0 0 2 X 7 Total C N O 58 39 9 10 0 0 2 Z 7 Total C N O 58 39 9 10 0 0 2 b 7 Total C N O 58 39 9 10 0 0 3 Total C N O 58 39 9 10 0 0 0		1	1			10		0
2 T 7 Total C N O 58 39 9 10 0 0 2 V 7 Total C N O 58 39 9 10 0 0 2 X 7 Total C N O 58 39 9 10 0 0 2 Z 7 Total C N O 58 39 9 10 0 0 2 D Total C N O 58 39 9 10 0 0 2 D Total C N O 58 39 9 10 0 0 2 D Total C N O 58 39 9 10 0 0 3 Total C N O 58 39 9 10 0 0 3 Total C N O 0 0 0 0	9	D	7	Total C	N	О	0	0
2 T 7 58 39 9 10 0 0 2 V 7 Total C N O S8 39 9 10 0 0 2 X 7 Total C N O S8 39 9 10 0 0 2 Z 7 Total C N O S8 39 9 10 0 0 2 b 7 Total C N O S8 39 9 10 0 0 3 Total C N O S8 39 9 10 0 0 0		Λ	1	58 39	9	10	U	U
2 V 7 Total C N O 58 39 9 10 0 0 2 X 7 Total C N O 58 39 9 10 0 0 2 X 7 Total C N O 58 39 9 10 0 0 2 Z 7 Total C N O 58 39 9 10 0 0 2 b 7 Total C N O 58 39 9 10 0 0 3 0 0 0 0 3 0 0 0	9	Т	7	Total C	N	О	0	0
2 V 7 58 39 9 10 0 0 2 X 7 Total C N O 58 39 9 10 0 0 2 Z 7 Total C N O 58 39 9 10 0 0 2 b 7 Total C N O 58 39 9 10 0 0 3 d 7 Total C N O 0 0 0 0 0		1	1	58 39	9	10	U	U
2 X 7 Total C N O 58 39 9 10 0 0 2 Z 7 Total C N O 58 39 9 10 0 0 2 D Total C N O 58 39 9 10 0 0 2 D Total C N O 58 39 9 10 0 0 3 D Total C N O 0 0 0 3 D Total C N O 0 0 0	9	17	7	Total C	N	О	0	0
2 X 7 58 39 9 10 0 0 2 Z 7 Total C N O 58 39 9 10 0 0 2 b 7 Total C N O 58 39 9 10 0 0 2 d 7 Total C N O 0 0 0 0 0	2	V	(58 39	9	10	U	U
2 Z 7 Total C N O 0 0 2 b 7 Total C N O 0 0 58 39 9 10 0 0 0 0 0 0 0 0	0	v	7	Total C	N	О	0	0
2 Z 7 58 39 9 10 0 0 2 b 7 Total C N O S8 39 9 10 0 0 2 d 7 Total C N O S9 0 0 0	2	X	(58 39	9	10	U	0
2 b 7 Total C N O 0 0 Total C N O 0 0	0	7	-	Total C	N	O	0	0
2 b 7 Total C N O 0 0 2 d 7 Total C N O 0 0	2	Z	1		9	10	U	U
2 b 7 58 39 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1	—	Total C	N	О	0	0
2 d 7 Total C N O 0	2	p	7		9	10	U	0
		1	_					
	2	d	7	58 39	9	10	U	0

 \bullet Molecule 3 is AMINO GROUP (CCD ID: NH2) (formula: $\mathrm{H_2N}).$


Mol	Chain	Residues	Atoms	AltConf
3	A	1	Total N 1 1	0
3	С	1	Total N 1 1	0
3	E	1	Total N 1 1	0
3	G	1	Total N 1 1	0
3	I	1	Total N 1 1	0
3	К	1	Total N 1 1	0
3	M	1	Total N 1 1	0
3	О	1	Total N 1 1	0
3	Q	1	Total N 1 1	0
3	S	1	Total N 1 1	0
3	U	1	Total N 1 1	0
3	W	1	Total N 1 1	0
3	Y	1	Total N 1 1	0
3	a	1	Total N 1 1	0

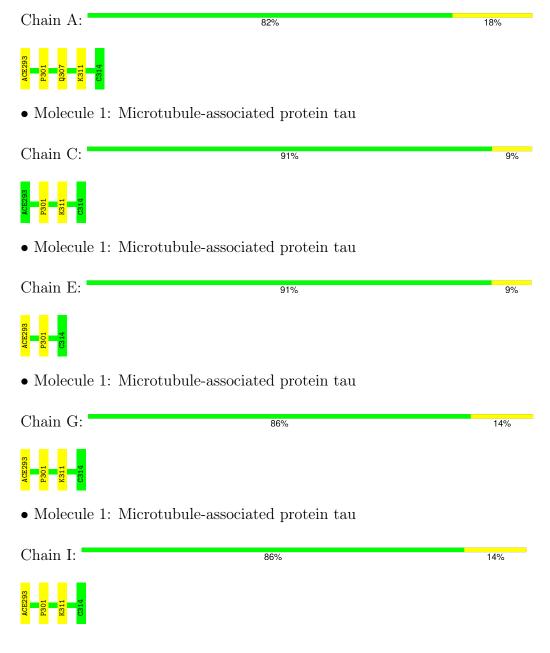
Continued from previous page...

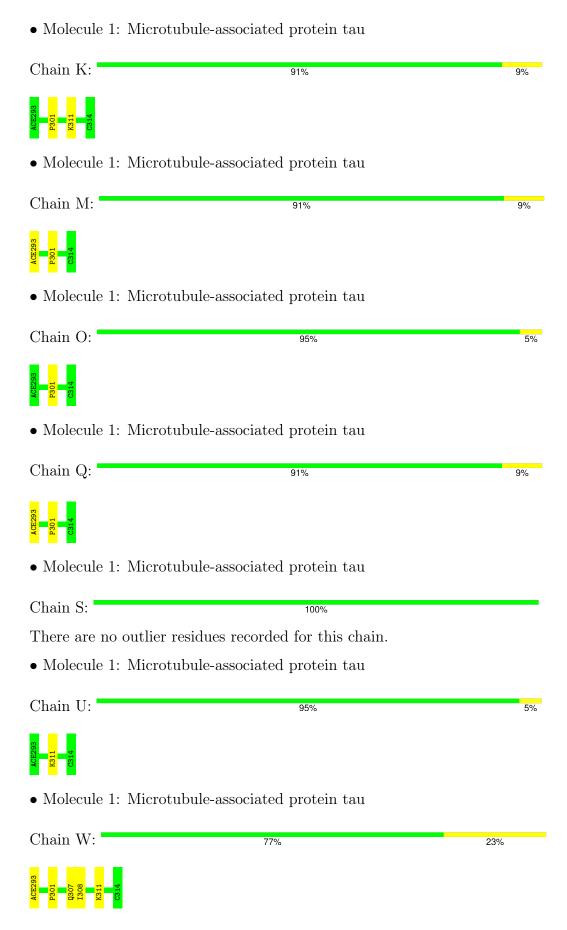
Mol	Chain	Residues	Atoms	AltConf
3	c	1	Total N 1 1	0

 $\bullet\,$ Molecule 4 is 1,3-dimethylbenzene (CCD ID: 8VH) (formula: $\mathrm{C_8H_{10}}).$

Mol	Chain	Residues	Atoms	AltConf
4	A	1	Total C 8 8	0
4	С	1	Total C 8 8	0
4	Е	1	Total C 8 8	0
4	G	1	Total C 8 8	0
4	I	1	Total C 8 8	0
4	K	1	Total C 8 8	0
4	M	1	Total C 8 8	0
4	О	1	Total C 8 8	0
4	Q	1	Total C 8 8	0
4	S	1	Total C 8 8	0

Continued from previous page...


Mol	Chain	Residues	Atoms	AltConf
4	U	1	Total C 8 8	0
4	W	1	Total C 8 8	0
4	Y	1	Total C 8 8	0
4	a	1	Total C 8 8	0
4	c	1	Total C 8 8	0


3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Microtubule-associated protein tau

• Molecule 1: Micro	otubule-associated protein tau	
Chain Y:	95%	5%
ACE293 K311 C314		
• Molecule 1: Micro	otubule-associated protein tau	
Chain a:	86%	14%
A CE 293 P 301 K 311 C 314		
• Molecule 1: Micro	otubule-associated protein tau	
Chain c:	91%	9%
ACE293 P301 R311 C314		
• Molecule 2: SER-	VAL-GLN-ILE-VAL-TYR-LYS	
Chain B:	86%	14%
N306 K311		
• Molecule 2: SER-	VAL-GLN-ILE-VAL-TYR-LYS	
Chain D:	100%	
K311 + K3		
• Molecule 2: SER-	VAL-GLN-ILE-VAL-TYR-LYS	
Chain F:	100%	
There are no outlier	r residues recorded for this chain.	
• Molecule 2: SER-	VAL-GLN-ILE-VAL-TYR-LYS	
Chain H:	100%	
There are no outlier	r residues recorded for this chain.	
• Molecule 2: SER-	VAL-GLN-ILE-VAL-TYR-LYS	
Chain J:	100%	

There are no outlier residues recorded for this chain.	
• Molecule 2: SER-VAL-GLN-ILE-VAL-TYR-LYS	
Chain L: 100%	
•	
K 311 000 000 000 000 000 000 000 000 000	
• Molecule 2: SER-VAL-GLN-ILE-VAL-TYR-LYS	
Chain N:	
There are no outlier residues recorded for this chain.	
• Molecule 2: SER-VAL-GLN-ILE-VAL-TYR-LYS	
Chain P:	
83 11 2 8	
• Molecule 2: SER-VAL-GLN-ILE-VAL-TYR-LYS	
Chain R:	
There are no outlier residues recorded for this chain.	
• Molecule 2: SER-VAL-GLN-ILE-VAL-TYR-LYS	
Chain T: 100%	
There are no outlier residues recorded for this chain.	
• Molecule 2: SER-VAL-GLN-ILE-VAL-TYR-LYS	
Chain V:	
There are no outlier residues recorded for this chain.	
• Molecule 2: SER-VAL-GLN-ILE-VAL-TYR-LYS	
Chain X: 86%	14%
No. 11 13 13 13 13 13 13 13 13 13 13 13 13	
• Molecule 2: SER-VAL-GLN-ILE-VAL-TYR-LYS	
Chain Z:	
There are no outlier residues recorded for this chain.	

Chain b: 100%

 \bullet Molecule 2: SER-VAL-GLN-ILE-VAL-TYR-LYS

Chain d: 100%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	HELICAL	Depositor
Imposed symmetry	HELICAL, twist=-2.85°, rise=4.79 Å, axial	Depositor
	sym=C1	
Number of segments used	69100	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{Å}^2)$	59.495	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.055	Depositor
Minimum map value	-0.026	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.002	Depositor
Recommended contour level	0.007	Depositor
Map size (Å)	263.04, 263.04, 263.04	wwPDB
Map dimensions	320, 320, 320	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.822, 0.822, 0.822	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 8VH, NH2, ACE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Clasies	Bond	lengths	Bond	angles
MIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.13	0/157	0.31	0/213
1	С	0.12	0/157	0.31	0/213
1	Ε	0.13	0/157	0.31	0/213
1	G	0.12	0/157	0.31	0/213
1	Ι	0.12	0/157	0.31	0/213
1	K	0.13	0/157	0.31	0/213
1	M	0.12	0/157	0.31	0/213
1	О	0.13	0/157	0.31	0/213
1	Q	0.12	0/157	0.31	0/213
1	S	0.12	0/157	0.31	0/213
1	U	0.13	0/157	0.31	0/213
1	W	0.12	0/157	0.31	0/213
1	Y	0.13	0/157	0.32	0/213
1	a	0.13	0/157	0.31	0/213
1	c	0.12	0/157	0.32	0/213
2	В	0.09	0/58	0.18	0/77
2	D	0.10	0/58	0.18	0/77
2	F	0.09	0/58	0.18	0/77
2	Н	0.09	0/58	0.19	0/77
2	J	0.09	0/58	0.18	0/77
2	L	0.09	0/58	0.18	0/77
2	N	0.09	0/58	0.19	0/77
2	Р	0.08	0/58	0.18	0/77
2	R	0.09	0/58	0.18	0/77
2	Τ	0.09	0/58	0.19	0/77
2	V	0.09	0/58	0.18	0/77
2	X	0.09	0/58	0.19	0/77
2	Z	0.10	0/58	0.18	0/77
2	b	0.09	0/58	0.19	0/77
2	d	0.09	0/58	0.18	0/77
All	All	0.12	0/3225	0.28	0/4350

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	156	0	157	4	0
1	С	156	0	157	2	0
1	Е	156	0	157	2	0
1	G	156	0	157	3	0
1	I	156	0	157	3	0
1	K	156	0	157	2	0
1	M	156	0	157	2	0
1	О	156	0	157	1	0
1	Q	156	0	157	2	0
1	S	156	0	157	0	0
1	U	156	0	157	1	0
1	W	156	0	157	5	0
1	Y	156	0	157	1	0
1	a	156	0	157	3	0
1	c	156	0	157	2	0
2	В	58	0	63	2	0
2	D	58	0	63	0	0
2	F	58	0	63	0	0
2	Н	58	0	63	0	0
2	J	58	0	63	0	0
2	L	58	0	63	0	0
2	N	58	0	63	0	0
2	Р	58	0	63	0	0
2	R	58	0	63	0	0
2	Т	58	0	63	0	0
2	V	58	0	63	0	0
2	X	58	0	63	1	0
2	Z	58	0	63	0	0
2	b	58	0	63	0	0
2	d	58	0	63	0	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	A	1	0	0	0	0
3	С	1	0	0	0	0
3	Ε	1	0	0	0	0
3	G	1	0	0	0	0
3	I	1	0	0	0	0
3	K	1	0	0	0	0
3	M	1	0	0	0	0
3	О	1	0	0	0	0
3	Q	1	0	0	0	0
3	S	1	0	0	0	0
3	U	1	0	0	0	0
3	W	1	0	0	0	0
3	Y	1	0	0	0	0
3	a	1	0	0	0	0
3	c	1	0	0	0	0
4	A	8	0	0	0	0
4	С	8	0	0	0	0
4	Ε	8	0	0	0	0
4	G	8	0	0	0	0
4	I	8	0	0	0	0
4	K	8	0	0	0	0
4	M	8	0	0	0	0
4	О	8	0	0	0	0
4	Q	8	0	0	0	0
4	S	8	0	0	0	0
4	U	8	0	0	0	0
4	W	8	0	0	0	0
4	Y	8	0	0	0	0
4	a	8	0	0	0	0
4	c	8	0	0	0	0
All	All	3345	0	3300	18	0

The all-atom clash score is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clash score for this structure is 3.

The worst 5 of 18 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	Clash overlap (Å)
1:A:301:PRO:HA	1:W:301:PRO:HD2	1.86	0.57
1:C:301:PRO:HA	1:c:301:PRO:HD2	1.88	0.56
1:E:301:PRO:HD2	1:M:301:PRO:HA	1.88	0.54

Continued from previous page...

Atom-1	Atom-2	$\begin{array}{c} \text{Interatomic} \\ \text{distance (Å)} \end{array}$	$egin{aligned} \operatorname{Clash} \ \operatorname{overlap}\ (\mathring{\mathbf{A}}) \end{aligned}$
1:K:301:PRO:HD2	1:O:301:PRO:HA	1.91	0.53
1:W:293:ACE:H1	1:Y:311:LYS:HD3	1.92	0.51

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	С	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	E	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	G	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	I	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	K	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	M	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	О	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	Q	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	S	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	U	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	W	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	Y	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	a	$20/22\ (91\%)$	20 (100%)	0	0	100	100
1	c	$20/22\ (91\%)$	20 (100%)	0	0	100	100
2	В	5/7~(71%)	5 (100%)	0	0	100	100
2	D	5/7~(71%)	5 (100%)	0	0	100	100
2	F	5/7~(71%)	5 (100%)	0	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	Н	5/7 (71%)	5 (100%)	0	0	100	100
2	J	5/7 (71%)	5 (100%)	0	0	100	100
2	L	5/7 (71%)	5 (100%)	0	0	100	100
2	N	5/7 (71%)	5 (100%)	0	0	100	100
2	Р	5/7 (71%)	5 (100%)	0	0	100	100
2	R	5/7 (71%)	5 (100%)	0	0	100	100
2	Τ	5/7 (71%)	5 (100%)	0	0	100	100
2	V	5/7 (71%)	5 (100%)	0	0	100	100
2	X	5/7 (71%)	5 (100%)	0	0	100	100
2	Z	5/7 (71%)	5 (100%)	0	0	100	100
2	b	5/7 (71%)	5 (100%)	0	0	100	100
2	d	5/7 (71%)	5 (100%)	0	0	100	100
All	All	375/435 (86%)	375 (100%)	0	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	A	18/18 (100%)	18 (100%)	0	100	100
1	\mathbf{C}	18/18 (100%)	18 (100%)	0	100	100
1	E	18/18 (100%)	18 (100%)	0	100	100
1	G	18/18 (100%)	18 (100%)	0	100	100
1	I	18/18 (100%)	18 (100%)	0	100	100
1	K	18/18 (100%)	18 (100%)	0	100	100
1	M	18/18 (100%)	18 (100%)	0	100	100
1	O	18/18 (100%)	18 (100%)	0	100	100
1	Q	18/18 (100%)	18 (100%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	S	18/18 (100%)	18 (100%)	0	100	100
1	U	18/18 (100%)	18 (100%)	0	100	100
1	W	18/18 (100%)	18 (100%)	0	100	100
1	Y	18/18 (100%)	18 (100%)	0	100	100
1	a	18/18 (100%)	18 (100%)	0	100	100
1	c	18/18 (100%)	18 (100%)	0	100	100
2	В	7/7 (100%)	7 (100%)	0	100	100
2	D	7/7 (100%)	7 (100%)	0	100	100
2	F	7/7 (100%)	7 (100%)	0	100	100
2	Н	7/7 (100%)	7 (100%)	0	100	100
2	J	7/7 (100%)	7 (100%)	0	100	100
2	L	7/7 (100%)	7 (100%)	0	100	100
2	N	7/7 (100%)	7 (100%)	0	100	100
2	Р	7/7 (100%)	7 (100%)	0	100	100
2	R	7/7 (100%)	7 (100%)	0	100	100
2	Т	7/7 (100%)	7 (100%)	0	100	100
2	V	7/7 (100%)	7 (100%)	0	100	100
2	X	7/7 (100%)	7 (100%)	0	100	100
2	Z	7/7 (100%)	7 (100%)	0	100	100
2	b	7/7 (100%)	7 (100%)	0	100	100
2	d	7/7 (100%)	7 (100%)	0	100	100
All	All	375/375 (100%)	375 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 15 such side chains are listed below:

Mol	Chain	Res	Type
1	О	296	ASN
1	a	296	ASN
1	Q	296	ASN
1	С	296	ASN
1	W	296	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 30 ligands modelled in this entry, 15 are modelled with single atom - leaving 15 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Т	Clasica	Das	T : 1-	В	ond leng	nd lengths		Bond angles	
Mol	ol Type Cl	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	8VH	A	402	1	8,8,8	0.32	0	10,10,10	0.19	0
4	8VH	С	402	1	8,8,8	0.31	0	10,10,10	0.20	0
4	8VH	Y	402	1	8,8,8	0.32	0	10,10,10	0.20	0
4	8VH	G	402	1	8,8,8	0.31	0	10,10,10	0.20	0
4	8VH	S	402	1	8,8,8	0.30	0	10,10,10	0.20	0
4	8VH	K	402	1	8,8,8	0.30	0	10,10,10	0.19	0
4	8VH	U	402	1	8,8,8	0.31	0	10,10,10	0.20	0
4	8VH	О	402	1	8,8,8	0.32	0	10,10,10	0.20	0
4	8VH	W	402	1	8,8,8	0.32	0	10,10,10	0.19	0
4	8VH	I	402	1	8,8,8	0.33	0	10,10,10	0.20	0
4	8VH	С	402	1	8,8,8	0.31	0	10,10,10	0.20	0
4	8VH	a	402	1	8,8,8	0.30	0	10,10,10	0.20	0
4	8VH	M	402	1	8,8,8	0.31	0	10,10,10	0.20	0
4	8VH	Е	402	1	8,8,8	0.31	0	10,10,10	0.20	0
4	8VH	Q	402	1	8,8,8	0.31	0	10,10,10	0.20	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	8VH	A	402	1	-	-	0/1/1/1
4	8VH	С	402	1	-	-	0/1/1/1
4	8VH	Y	402	1	-	-	0/1/1/1
4	8VH	G	402	1	-	-	0/1/1/1
4	8VH	S	402	1	-	-	0/1/1/1
4	8VH	K	402	1	-	-	0/1/1/1
4	8VH	U	402	1	-	-	0/1/1/1
4	8VH	О	402	1	-	-	0/1/1/1
4	8VH	W	402	1	-	-	0/1/1/1
4	8VH	I	402	1	-	-	0/1/1/1
4	8VH	С	402	1	-	-	0/1/1/1
4	8VH	a	402	1	-	-	0/1/1/1
4	8VH	M	402	1	-	-	0/1/1/1
4	8VH	Е	402	1	-	=	0/1/1/1
4	8VH	Q	402	1	-	-	0/1/1/1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

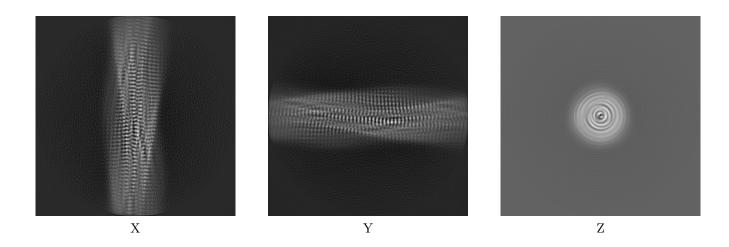
No monomer is involved in short contacts.

5.7 Other polymers (i)

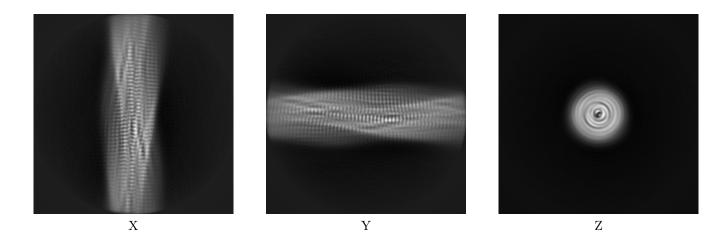
There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.


6 Map visualisation (i)

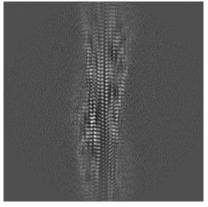
This section contains visualisations of the EMDB entry EMD-44133. These allow visual inspection of the internal detail of the map and identification of artifacts.


Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

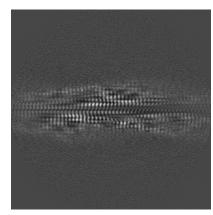
6.1 Orthogonal projections (i)

6.1.1 Primary map

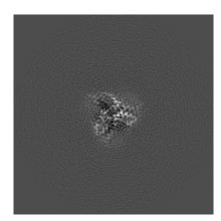
6.1.2 Raw map

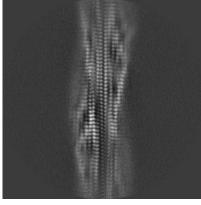


The images above show the map projected in three orthogonal directions.

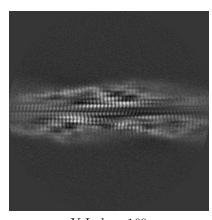


6.2 Central slices (i)

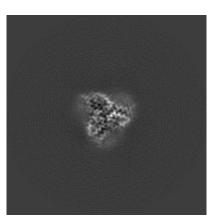

6.2.1 Primary map



Y Index: 160

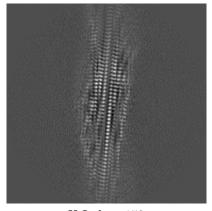


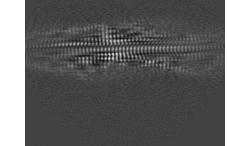
Z Index: 160

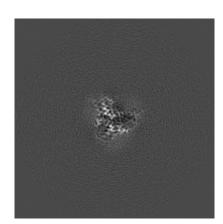

6.2.2 Raw map

X Index: 160

Y Index: 160

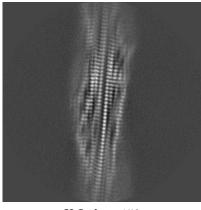

Z Index: 160

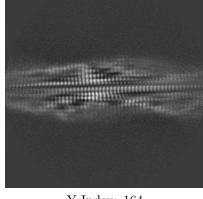

The images above show central slices of the map in three orthogonal directions.

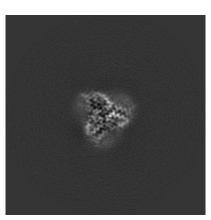


6.3 Largest variance slices (i)

6.3.1 Primary map




X Index: 150

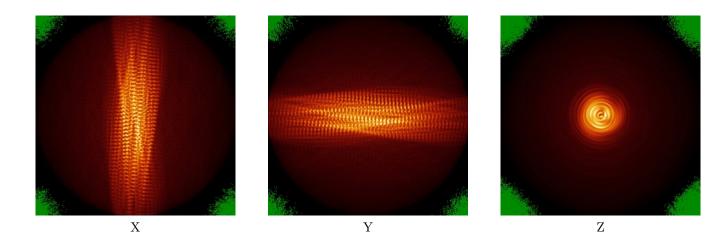

Y Index: 164

Z Index: 163

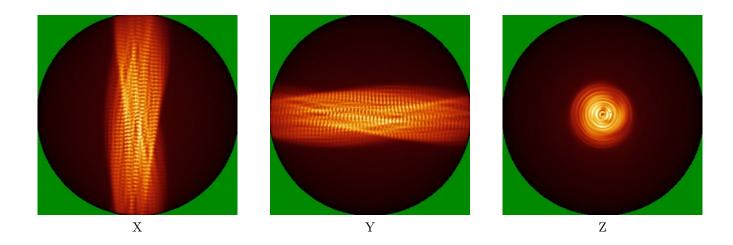
6.3.2 Raw map

X Index: 150

Y Index: 164


Z Index: 166

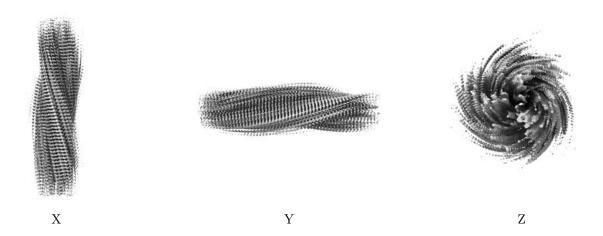
The images above show the largest variance slices of the map in three orthogonal directions.



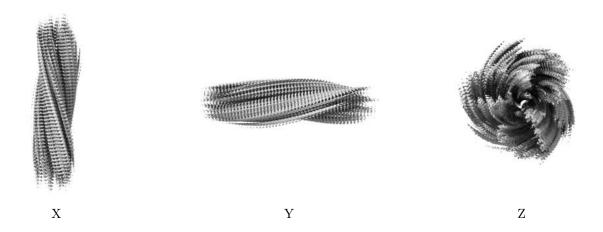
6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.


6.5 Orthogonal surface views (i)

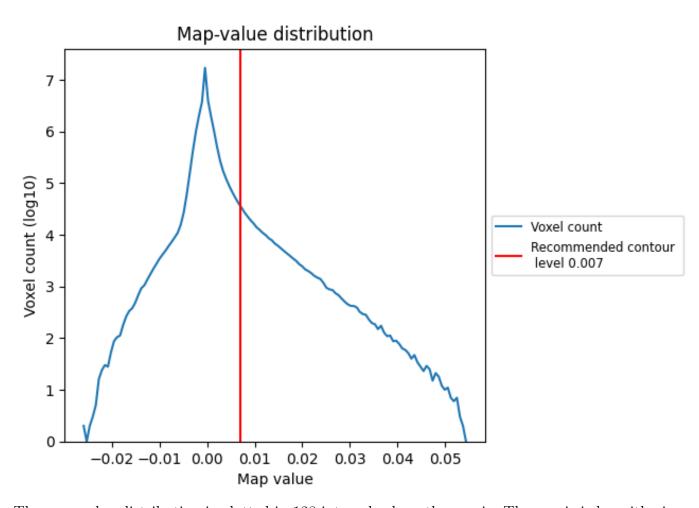
6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.007. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

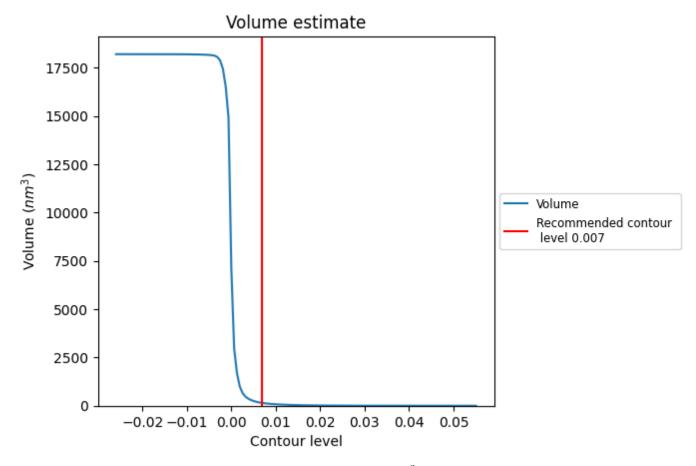
These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)


This section was not generated. No masks/segmentation were deposited.

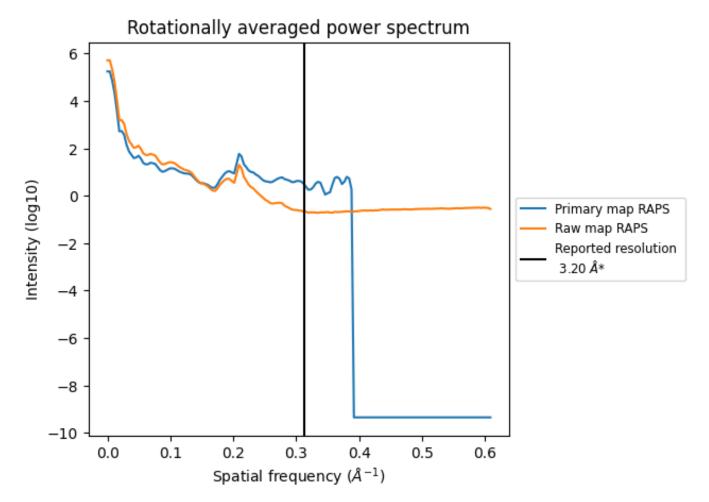
7 Map analysis (i)

This section contains the results of statistical analysis of the map.


7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

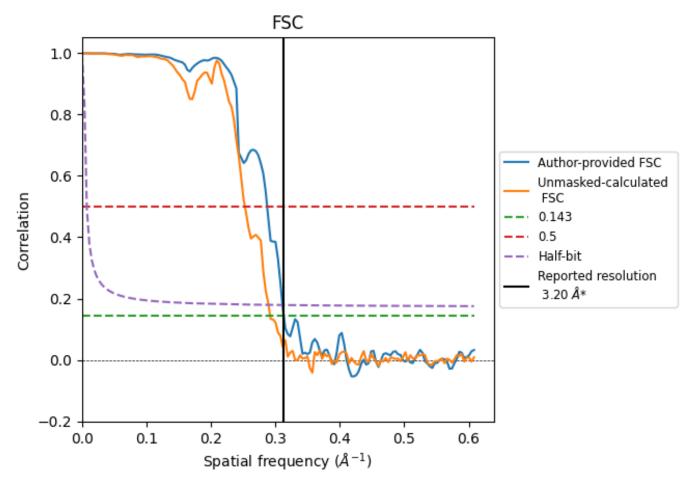
7.2 Volume estimate (i)



The volume at the recommended contour level is $145~\mathrm{nm}^3$; this corresponds to an approximate mass of $131~\mathrm{kDa}$.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)


*Reported resolution corresponds to spatial frequency of 0.312 $\rm \mathring{A}^{-1}$

8 Fourier-Shell correlation (i)

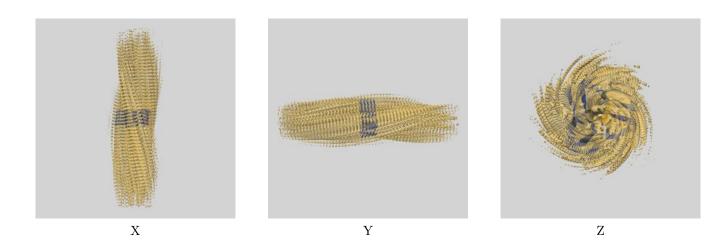
Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.312 $\rm \AA^{-1}$

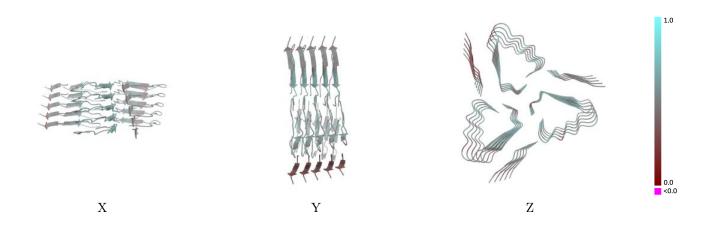
8.2 Resolution estimates (i)

Resolution estimate (Å)	Estimation criterion (FSC cut-off)			
rtesolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.20	-	-	
Author-provided FSC curve	3.19	3.48	3.21	
Unmasked-calculated*	3.42	3.96	3.46	

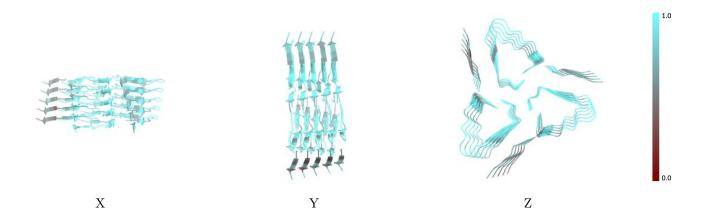

^{*}Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-44133 and PDB model 9B3A. Per-residue inclusion information can be found in section 3 on page 11.

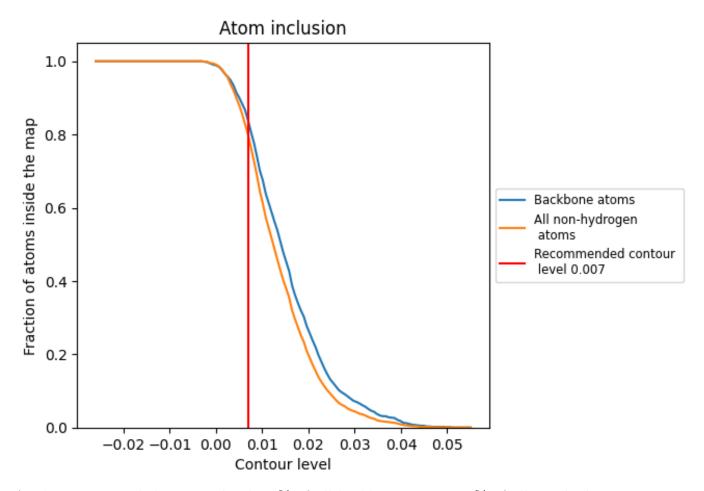

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.007 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.


9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.007).

9.4 Atom inclusion (i)

At the recommended contour level, 84% of all backbone atoms, 80% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.007) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.7970	0.5080
A	0.8900	0.5420
В	0.7190	0.4720
С	0.8530	0.5270
D	0.5970	0.3700
E	0.8650	0.5410
F	0.6490	0.4680
G	0.8650	0.5300
Н	0.5610	0.4770
I	0.8470	0.5290
J	0.5610	0.4770
K	0.8590	0.5280
L	0.6140	0.3640
M	0.8710	0.5440
N	0.6490	0.4580
О	0.8530	0.5260
Р	0.5970	0.3580
Q	0.8530	0.5270
R	0.5790	0.4820
S	0.9020	0.5450
T	0.7020	0.4700
U	0.8470	0.5280
V	0.5970	0.3740
W	0.8830	0.5440
X	0.6670	0.4700
Y	0.8530	0.5300
Z	0.5090	0.4480
a	0.8470	0.5260
b	0.5090	0.4550
С	0.8650	0.5320
d	0.5790	0.3710

